These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 5823565)

  • 1. On the possible role of crystals in the origins of life. II. The adsorption of amino acids by apatite crystals.
    Neuman MW; Neuman WF; Burton FG
    Curr Mod Biol; 1969 Oct; 3(1):69-73. PubMed ID: 5823565
    [No Abstract]   [Full Text] [Related]  

  • 2. On the possible role of crystals in the origins of life. I. The adsorption of nucleosides, nucleotides and pyrophosphate by apatite crystals.
    Burton FG; Neuman MW; Neuman WF
    Curr Mod Biol; 1969 Oct; 3(1):20-6. PubMed ID: 4309914
    [No Abstract]   [Full Text] [Related]  

  • 3. Theoretical detection of a dark contrast line in twinned apatite bicrystals and its possible correlation with the chemical properties of human dentin and enamel crystals.
    Brès EF; Waddington WG; Voegel JC; Barry JC; Frank RM
    Biophys J; 1986 Dec; 50(6):1185-93. PubMed ID: 3801577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure, morphology and crystal growth of biogenic and synthetic apatites.
    Heywood BR; Sparks NH; Shellis RP; Weiner S; Mann S
    Connect Tissue Res; 1990; 25(2):103-19. PubMed ID: 2175692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the possible role of crystals in the origins of life. 3. The phosphorylation of adenosine to AMP by apatite.
    Neuman MW; Neuman WF; Lane K
    Curr Mod Biol; 1970 Jul; 3(3):253-9. PubMed ID: 4318633
    [No Abstract]   [Full Text] [Related]  

  • 6. Physicochemical aspects of fluoride-apatite systems relevant to the study of dental caries.
    Moreno EC; Kresak M; Zahradnik RT
    Caries Res; 1977; 11 Suppl 1():142-71. PubMed ID: 318568
    [No Abstract]   [Full Text] [Related]  

  • 7. The possible role of solid surface area in condensation reactions during chemical evolution: reevaluation.
    Lahav N; Chang S
    J Mol Evol; 1976 Dec; 8(4):357-80. PubMed ID: 13225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some ultrastructural aspects of biological apatite dissolution and possible role of dislocations.
    Daculsi G; Kerebel B
    J Biol Buccale; 1977 Sep; 5(3):203-18. PubMed ID: 122695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of phenol from an aqueous solution by selected apatite adsorbents: kinetic process and impact of the surface properties.
    Bahdod A; El Asri S; Saoiabi A; Coradin T; Laghzizil A
    Water Res; 2009 Feb; 43(2):313-8. PubMed ID: 18986672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of protein and non-protein amino acids on a clay mineral: a possible role of selection in chemical evolution.
    Friebele E; Shimoyama A; Ponnamperuma C
    J Mol Evol; 1980 Dec; 16(3-4):269-78. PubMed ID: 6162962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic morphology of heterogeneous fluoridated carbonate apatites.
    Okazaki M
    J Dent Res; 1993 Sep; 72(9):1285-90. PubMed ID: 8360377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibronectin Adsorption on Hydroxyapatite Nanosensors and the Effect of Fibronectin Preadsorption on Biological Apatite Growth.
    He Z; He L; Deng C
    J Biomed Nanotechnol; 2018 Apr; 14(4):736-746. PubMed ID: 31352947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive apatite coating on titanium using an alternate soaking process.
    Kono H; Miyamoto M; Ban S
    Dent Mater J; 2007 Mar; 26(2):186-93. PubMed ID: 17621933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A method for measuring apatite crystals in human dentine by high resolution transmission electron microscopy].
    Daculsi G; Kerebel B; Verbaere A
    C R Acad Hebd Seances Acad Sci D; 1978 May; 286(20):1439-42. PubMed ID: 97005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent uses of electron microscopy in the study of physico-chemical processes affecting the reactivity of synthetic and biological apatites.
    Featherstone JD; Nelson DG
    Scanning Microsc; 1989 Sep; 3(3):815-27; discussion 827-8. PubMed ID: 2617263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen.
    Silver FH; Landis WJ
    Connect Tissue Res; 2011 Jun; 52(3):242-54. PubMed ID: 21405976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interatomic potential models for natural apatite crystals: incorporating strontium and the lanthanides.
    Rabone JA; De Leeuw NH
    J Comput Chem; 2006 Jan; 27(2):253-66. PubMed ID: 16331644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous fluoridated apatites synthesized with a three-step fluoride supply system.
    Okazaki M; Tohda H; Yanagisawa T; Taira M; Takahashi J
    Biomaterials; 1998 May; 19(10):919-23. PubMed ID: 9690833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dislocations and dissolution in apatites: theoretical considerations.
    Arends J; Jongebloed WL
    Caries Res; 1977; 11(3):186-8. PubMed ID: 265759
    [No Abstract]   [Full Text] [Related]  

  • 20. Adsorption of nucleotides on biomimetic apatite: The case of cytidine 5' monophosphate (CMP).
    Choimet M; Tourrette A; Drouet C
    J Colloid Interface Sci; 2015 Oct; 456():132-7. PubMed ID: 26117294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.