These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 5824575)

  • 1. Ion transport by heart mitochondria. XVI. Cation binding by submitochondrial particles.
    Jacobus WE; Brierley GP
    J Biol Chem; 1969 Sep; 244(18):4995-5004. PubMed ID: 5824575
    [No Abstract]   [Full Text] [Related]  

  • 2. Ion transport by heart mitochondria. The effects of Cu 2+ on membrane permeability.
    Hwang KM; Scott KM; Brierley GP
    Arch Biochem Biophys; 1972 Jun; 150(2):746-56. PubMed ID: 4261416
    [No Abstract]   [Full Text] [Related]  

  • 3. Isolation of a divalent cation ionophore from beef heart mitochondria.
    Blondin GA
    Biochem Biophys Res Commun; 1974 Jan; 56(1):97-105. PubMed ID: 4362945
    [No Abstract]   [Full Text] [Related]  

  • 4. Energy-linked ion translocation in submitochondrial particles. 3. Transport of monovalent cations by submitochondrial particles.
    Cockrell RS
    J Biol Chem; 1973 Oct; 248(19):6828-33. PubMed ID: 4795660
    [No Abstract]   [Full Text] [Related]  

  • 5. Ion transport by heart mitochondria. X. The uptake and release of Zn2+ and its relation to the energy-linked accumulation of magnesium.
    Brierley GP; Knight VA
    Biochemistry; 1967 Dec; 6(12):3892-901. PubMed ID: 4965577
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on the fluorescence and binding of 8-anilino-1-naphthalene sulfonate by submitochondrial particles.
    Harris RA
    Arch Biochem Biophys; 1971 Dec; 147(2):436-45. PubMed ID: 5136095
    [No Abstract]   [Full Text] [Related]  

  • 7. The uptake and extrusion of monovalent cations by isolated heart mitochondria.
    Brierley GP
    Mol Cell Biochem; 1976 Jan; 10(1):41-63. PubMed ID: 2858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion transport in heart mitochondria. 8. The effect of ethylenediaminetertraacetate on monovalent ion uptake.
    Settlemire CT; Hunter GR; Brierley GP
    Biochim Biophys Acta; 1968 Nov; 162(4):487-99. PubMed ID: 4973276
    [No Abstract]   [Full Text] [Related]  

  • 9. Energy-dependent release of magnesium from beef heart submitochondrial particles.
    Schuster SM; Olson MS
    J Biol Chem; 1973 Dec; 248(24):8370-7. PubMed ID: 4202777
    [No Abstract]   [Full Text] [Related]  

  • 10. Energy-driven Ca45 accumulation in submitochondrial particles.
    Loyter A; Saltzgaber J; Steensland H; Racker E
    Ann N Y Acad Sci; 1969 Oct; 147(19):846-8. PubMed ID: 5261239
    [No Abstract]   [Full Text] [Related]  

  • 11. Energy-linked ion translocation in submitochondrial particles. I. Ca++ accumulation in submitochondrial particles.
    Loyter A; Christiansen RO; Steensland H; Saltzgaber J; Racker E
    J Biol Chem; 1969 Aug; 244(16):4422-7. PubMed ID: 4308860
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of pH on cytochromes b in ATP-Mg submitochondrial particles.
    Lee IY; Slater EC
    Biochim Biophys Acta; 1972 Feb; 256(2):587-93. PubMed ID: 4335843
    [No Abstract]   [Full Text] [Related]  

  • 13. Myocardial zinc metabolism in experimental myocardial infarction.
    Lindeman RD; Yunice AA; Baxter DJ; Miller LR; Nordquist J
    J Lab Clin Med; 1973 Feb; 81(2):194-204. PubMed ID: 4683421
    [No Abstract]   [Full Text] [Related]  

  • 14. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles.
    Grinius LL; Jasaitis AA; Kadziauskas YP; Liberman EA; Skulachev VP; Topali VP; Tsofina LM; Vladimirova MA
    Biochim Biophys Acta; 1970 Aug; 216(1):1-12. PubMed ID: 4395700
    [No Abstract]   [Full Text] [Related]  

  • 15. Lipid-protein interactions in mitochondria. I. Conditions affecting binding of phospholipids to lipid-depleted mitochondria.
    Lenaz G; Sechi AM; Parenti-Castelli G; Masotti L
    Arch Biochem Biophys; 1970 Nov; 141(1):79-88. PubMed ID: 5480128
    [No Abstract]   [Full Text] [Related]  

  • 16. Mg2+ and the permeability of heart mitochondria to monovalent cations.
    Wehrle JP; Jurkowitz M; Scott KM; Brierley GP
    Arch Biochem Biophys; 1976 May; 174(1):313-23. PubMed ID: 7203
    [No Abstract]   [Full Text] [Related]  

  • 17. Energy-linked ion translocation in submitochondrial particles. II. Properties of submitochondrial particles capable of Ca++ translocation.
    Christiansen RO; Steensland H; Loyter A; Saltzgaber J; Racker E
    J Biol Chem; 1969 Aug; 244(16):4428-36. PubMed ID: 4185156
    [No Abstract]   [Full Text] [Related]  

  • 18. Anilinonaphthalenesulfonate fluorescence changes induced by non-emzymatic generation of membrane potential in mitochondria and submitochondrial particles.
    Jasaitis AA; Kuliene VV; Skulachev VP
    Biochim Biophys Acta; 1971 Apr; 234(1):177-81. PubMed ID: 5105364
    [No Abstract]   [Full Text] [Related]  

  • 19. Control of the energy coupling modes in mitochondria by mercurials.
    Southard JH; Green DE
    Biochem Biophys Res Commun; 1974 Dec; 61(4):1310-6. PubMed ID: 4477015
    [No Abstract]   [Full Text] [Related]  

  • 20. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria.
    Bakeeva LE; Grinius LL; Jasaitis AA; Kuliene VV; Levitsky DO; Liberman EA; Severina II; Skulachev VP
    Biochim Biophys Acta; 1970 Aug; 216(1):13-21. PubMed ID: 4250571
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.