These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 5824601)

  • 1. The effect of tolerance and withdrawal on the in vivo metabolism of N-C14-methyl-dihydro-morphine in the rat.
    Yeh SY; Woods LA
    J Pharmacol Exp Ther; 1969 Oct; 169(2):168-74. PubMed ID: 5824601
    [No Abstract]   [Full Text] [Related]  

  • 2. Physiologic disposition of N-C14-methyl-codeine in the rat.
    Yeh SY; Woods LA
    J Pharmacol Exp Ther; 1969 Mar; 166(1):86-95. PubMed ID: 5776024
    [No Abstract]   [Full Text] [Related]  

  • 3. Disposition and metabolism of ( 3 H)pseudomorphine in the rat.
    Misra AL; Mule SJ
    Biochem Pharmacol; 1972 Jan; 21(1):103-7. PubMed ID: 5058698
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on morphine tolerance in mice. I. In vivo N-demethylation of morphine and N- and O-demethylation of codeine.
    Adler TK
    J Pharmacol Exp Ther; 1967 Jun; 156(3):585-90. PubMed ID: 6028882
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on the metabolism of 3-O-tert.-butylmorphine, a new morphine derivative, by the rat.
    Kamm JJ; Bastone VB; Mohacsi E; Vane FM
    Xenobiotica; 1971 May; 1(3):273-85. PubMed ID: 5153714
    [No Abstract]   [Full Text] [Related]  

  • 6. Maternal and fetal distribution of H3-dihydromorphine in the tolerant and nontolerant rat.
    Yeh SY; Woods LA
    J Pharmacol Exp Ther; 1970 Jul; 174(1):9-13. PubMed ID: 5424708
    [No Abstract]   [Full Text] [Related]  

  • 7. Influence of morphine tolerance and withdrawal on intestinal salt and water transport in the rat in vivo and in vitro.
    Warhurst G; Smith GS; Higgs N; Tonge A; Turnberg LA
    Gastroenterology; 1984 Nov; 87(5):1035-41. PubMed ID: 6541171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excretion of codeine and its metabolites by dogs, rabbits and cats.
    Yeh SY; Woods LA
    Arch Int Pharmacodyn Ther; 1971 Jun; 191(2):231-42. PubMed ID: 5089213
    [No Abstract]   [Full Text] [Related]  

  • 9. Determination of radioactive-labeled codeine, morphine, dihydromorphine, and their metabolites in biological materials.
    Yeh SY; Woods LA
    J Pharm Sci; 1970 Mar; 59(3):380-4. PubMed ID: 5416184
    [No Abstract]   [Full Text] [Related]  

  • 10. Ketorolac prevents recurrent withdrawal induced hyperalgesia but does not inhibit tolerance to spinal morphine in the rat.
    Dunbar SA; Karamian I; Zhang J
    Eur J Pain; 2007 Jan; 11(1):1-6. PubMed ID: 16448827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. d-Methadone blocks morphine tolerance and N-methyl-D-aspartate-induced hyperalgesia.
    Davis AM; Inturrisi CE
    J Pharmacol Exp Ther; 1999 May; 289(2):1048-53. PubMed ID: 10215686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Insecticides in metabolism. XI. Excretion, distribution and changes of aldrin-C14 and dieldrin-C14 in the rat].
    Korte F; Kochen W
    Med Pharmacol Exp Int J Exp Med; 1966; 15(4):404-8. PubMed ID: 6012771
    [No Abstract]   [Full Text] [Related]  

  • 13. Attenuation and reversal of morphine tolerance by the competitive N-methyl-D-aspartate receptor antagonist, LY274614.
    Tiseo PJ; Inturrisi CE
    J Pharmacol Exp Ther; 1993 Mar; 264(3):1090-6. PubMed ID: 8450453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-demethylation of N-14C-methyl-codeine in morphine tolerant and nontolerant rats and mice.
    Yeh SY; Woods LA
    Proc Soc Exp Biol Med; 1971 Mar; 136(3):782-4. PubMed ID: 5555371
    [No Abstract]   [Full Text] [Related]  

  • 15. Central administration of selective melanocortin 4 receptor antagonist HS014 prevents morphine tolerance and withdrawal hyperalgesia.
    Kalange AS; Kokare DM; Singru PS; Upadhya MA; Chopde CT; Subhedar NK
    Brain Res; 2007 Nov; 1181():10-20. PubMed ID: 17915196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Studies with C14-labelled N-(4'-chlore-3'-sulfameyl-benzelsulfeny)-N-methyl-2-aminomethyl-2-methyl-tetrahydrefuran. Metabolism and kinetics].
    Duhm B; Maul W; Medenwald H; Patzschke K; Wegner LA
    Arzneimittelforschung; 1967 Jun; 17(6):672-87. PubMed ID: 5632368
    [No Abstract]   [Full Text] [Related]  

  • 17. The ontogeny of mu opiate tolerance and dependence in the rat: antinociceptive and biochemical studies.
    Windh RT; Little PJ; Kuhn CM
    J Pharmacol Exp Ther; 1995 Jun; 273(3):1361-74. PubMed ID: 7791109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of opioid ligands possessing mixed micro agonist/delta antagonist activity among pyridomorphinans derived from naloxone, oxymorphone, and hydromorphone [correction of hydropmorphone].
    Ananthan S; Khare NK; Saini SK; Seitz LE; Bartlett JL; Davis P; Dersch CM; Porreca F; Rothman RB; Bilsky EJ
    J Med Chem; 2004 Mar; 47(6):1400-12. PubMed ID: 14998329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of two different glucuronide metabolites of naloxone from the urine of rabbit and chicken.
    Fujimoto JM
    J Pharmacol Exp Ther; 1969 Jul; 168(1):180-6. PubMed ID: 5792680
    [No Abstract]   [Full Text] [Related]  

  • 20. The metabolism of coumarin-2-14C and 7-hydroxycoumarin-2-14C (umbelliferone-2-14C) in the rat.
    Van Sumere CF; Teuchy H
    Arch Int Physiol Biochim; 1968 Dec; 76(5):968-70. PubMed ID: 4184454
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.