These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 5827533)

  • 1. Effect of photoperiod and temperature on fatty acid composition of the mosquito Culex tarsalis.
    Harwood RF; Takata N
    J Insect Physiol; 1965 Jun; 11(6):711-6. PubMed ID: 5827533
    [No Abstract]   [Full Text] [Related]  

  • 2. Changes in the composition of lipids and fatty acids in adult Culex tarsalis and Anopheles freeborni during the overwintering period.
    Schaefer CH; Washino RK
    J Insect Physiol; 1969 Mar; 15(3):395-402. PubMed ID: 5781150
    [No Abstract]   [Full Text] [Related]  

  • 3. Neutral lipid composition of Culex quinquefasciatus and Culex tritaeniorhynchus cells at two phases of growth.
    Yang TK; McMeans E; Anderson LE; Jenkin HM
    Lipids; 1976 Jan; 11(1):21-7. PubMed ID: 1250064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingophospholipids of species of Aedes and Culex mosquito cells cultivated in suspension culture from logarithmic and stationary phases of growth.
    Yang TK; Means E; Anderson LE; Jenkin HM
    Lipids; 1974 Dec; 9(12):1009-13. PubMed ID: 4444421
    [No Abstract]   [Full Text] [Related]  

  • 5. Phospholipid composition of Culex quinquefasciatus and Culex tritaeniorhynchus cells in logarithmic and stationary growth phases.
    Jenkin HM; McMeans E; Anderson LE; Yang TK
    Lipids; 1976 Sep; 11(9):697-704. PubMed ID: 994762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the lipid composition of Culex quinquefasciatus and Culex tritaeniorhynchus cells obtained from the logarithmic and stationary phases of growth.
    McMeans E; Yang TK; Anderson LE; Louloudes S; Jenkin HM
    Lipids; 1976 Jan; 11(1):28-33. PubMed ID: 1250065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epoxide hydrolase activities and epoxy fatty acids in the mosquito Culex quinquefasciatus.
    Xu J; Morisseau C; Yang J; Mamatha DM; Hammock BD
    Insect Biochem Mol Biol; 2015 Apr; 59():41-9. PubMed ID: 25686802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sources of energy utilized by natural populations of the mosquito, Culex tarsalis, for overwintering.
    Schaefer CH; Miura T
    J Insect Physiol; 1972 Apr; 18(4):797-805. PubMed ID: 5016959
    [No Abstract]   [Full Text] [Related]  

  • 9. Interval flights and glycogen utilization by the mosquito, Culex tarsalis.
    Rowley WA
    J Insect Physiol; 1970 Oct; 16(10):1839-44. PubMed ID: 5470528
    [No Abstract]   [Full Text] [Related]  

  • 10. The Influence of Fatty Acid Methyl Esters (FAMEs) in the Biochemistry and the Na(+)/K(+)-ATPase Activity of Culex quinquefasciatus Larvae.
    Silva LN; Ribeiro-Neto JA; Valadares JM; Costa MM; Lima LA; Grillo LA; Cortes VF; Santos HL; Alves SN; Barbosa LA
    J Membr Biol; 2016 Aug; 249(4):459-67. PubMed ID: 26993642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An interspecific mosquito model for the mesenteronal infection barrier to western equine encephalomyelitis virus (Culex tarsalis and Culex pipiens).
    Houk EJ; Kramer LD; Hardy JL; Presser SB
    Am J Trop Med Hyg; 1986 May; 35(3):632-41. PubMed ID: 3706628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential fatty acids for the mosquito Culex pipiens.
    Dadd RH
    J Nutr; 1980 Jun; 110(6):1152-60. PubMed ID: 7381586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Culex tarsalis abundance on the northern Colorado front range using a landscape-level approach.
    Schurich JA; Kumar S; Eisen L; Moore CG
    J Am Mosq Control Assoc; 2014 Mar; 30(1):7-20. PubMed ID: 24772672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the phospholipids of Culex pipiens fatigans.
    Subrahmanyam D; Moturu LB; Rao RH
    Lipids; 1971 Dec; 6(12):867-72. PubMed ID: 4361135
    [No Abstract]   [Full Text] [Related]  

  • 15. Micro x-ray absorption spectroscopic analysis of arsenic localization and biotransformation in Chironomus riparius Meigen (Diptera: Chironomidae) and Culex tarsalis Coquillett (Culicidae).
    Mogren CL; Webb SM; Walton WE; Trumble JT
    Environ Pollut; 2013 Sep; 180():78-83. PubMed ID: 23733012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental regulation of autogeny in Culex tarsalis (Diptera: Culicidae) from Manitoba, Canada.
    Brust RA
    J Med Entomol; 1991 Nov; 28(6):847-53. PubMed ID: 1770520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation and Adaptation of Attractive Toxic Sugar Baits For Culex tarsalis and Culex quinquefasciatus Control In The Coachella Valley, Southern California.
    Qualls WA; Scott-Fiorenzano J; Müller GC; Arheart KL; Beier JC; Xue RD
    J Am Mosq Control Assoc; 2016 Dec; 32(4):292-299. PubMed ID: 28206859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of spatial and temporal subsetting on Culex tarsalis abundance models--a design for sensible reduction of vector surveillance.
    Brown HE; Doyle MS; Cox J; Eisen RJ; Nasci RS
    J Am Mosq Control Assoc; 2011 Jun; 27(2):120-8. PubMed ID: 21805843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature on Culex tarsalis (Diptera: Culicidae) from the Coachella and San Joaquin Valleys of California.
    Reisen WK
    J Med Entomol; 1995 Sep; 32(5):636-45. PubMed ID: 7473618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selected phenotypic features of BR91, a unique spirochaetal strain isolated from the Culex pipiens mosquito.
    Šikutová S; Bunková L; Krejčí E; Halouzka J; Sanogo YO; Rudolf I
    Microbiol Res; 2014; 169(5-6):348-52. PubMed ID: 24239193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.