These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 5832294)

  • 1. The kinetic behaviour of enzymes in organized systems. Mitochondrial succinate oxidase and fumarase.
    Gutfreund H; Jones EA
    Biochem J; 1964 Jan; 90(1):208-13. PubMed ID: 5832294
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of mitochondrial succinate dehydrogenase by substrate type activators.
    Gutman M
    Biochemistry; 1977 Jul; 16(14):3067-72. PubMed ID: 889791
    [No Abstract]   [Full Text] [Related]  

  • 3. Aldosterone synthesis by adrenal mitochondria. II. The effect of citric acid cycle intermediates; identification of the soluble stimulatory factor as fumarase.
    Tallan HH; Psychoyos S; Greengard P
    J Biol Chem; 1967 Apr; 242(8):1912-4. PubMed ID: 4381599
    [No Abstract]   [Full Text] [Related]  

  • 4. Influence of detergents on enzymic activity of cactus mitochondria.
    Khan AA; Krishnan PS; Sanwal GG
    Indian J Biochem; 1969 Dec; 6(4):208-10. PubMed ID: 4314883
    [No Abstract]   [Full Text] [Related]  

  • 5. The biogenesis of mitochondria. IX. Formation of the soluble mitochondrial enzymes malate dehydrogenase and fumarase in Saccharomyces cerevisiae.
    Vary MJ; Edwards CL; Stewart PR
    Arch Biochem Biophys; 1969 Mar; 130(1):235-43. PubMed ID: 4305159
    [No Abstract]   [Full Text] [Related]  

  • 6. Metabolism and enzymology of fluorosuccinic acids. I. Interactions with the succinate oxidase system.
    Brodie JD; Nicholls P
    Biochim Biophys Acta; 1970 Mar; 198(3):423-37. PubMed ID: 5436154
    [No Abstract]   [Full Text] [Related]  

  • 7. Regulation of succinate dehydrogenase in Escherichia coli.
    Ruíz-Herrera J; García LG
    J Gen Microbiol; 1972 Aug; 72(1):29-35. PubMed ID: 4341933
    [No Abstract]   [Full Text] [Related]  

  • 8. The kinetic behaviour of enzymes in organized systems: the effective concentrations of succinate in mitochondria.
    Jones EA; Gutfreund H
    Biochem J; 1964 Apr; 91(1):1C-2C. PubMed ID: 5833383
    [No Abstract]   [Full Text] [Related]  

  • 9. Ca2+ requirement in ATP-induced activation of uncoupled oxidation of succinate in isolated rat-liver mitochondria.
    Ezawa I; Ogata E
    Eur J Biochem; 1977 Aug; 77(3):427-35. PubMed ID: 891542
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies of gluconeogenic mitochondrial enzymes. IV. The conversion of oxaloacetate to fumarate by bovine liver mitochondrial malate dehydrogenase and fumarase.
    Fahien LA; Strmecki M
    Arch Biochem Biophys; 1969 Mar; 130(1):478-87. PubMed ID: 4305166
    [No Abstract]   [Full Text] [Related]  

  • 11. Metabolism and enzymology of flurosuccinic acids. II. Substrate and inhibitor effects with soluble succinate dehydrogenase.
    Tober CL; Nicholls P; Brodie JD
    Arch Biochem Biophys; 1970 Jun; 138(2):506-14. PubMed ID: 5433585
    [No Abstract]   [Full Text] [Related]  

  • 12. The energy-yielding oxidation of NADH by fumarate in submitochondrial particles of rat tissues.
    Wilson MA; Cascarano J
    Biochim Biophys Acta; 1970 Aug; 216(1):54-62. PubMed ID: 4322295
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on succinate dehydrogenase. II. On the nature of the reaction of competitive inhibitors and substrates with succinate dehydrogenase.
    Dervartanian DV; Veeger C
    Biochim Biophys Acta; 1965 Sep; 105(3):424-36. PubMed ID: 5862429
    [No Abstract]   [Full Text] [Related]  

  • 14. Nature of the activation of succinate dehydrogenase by various effectors and in hypobaria and hypoxia.
    Susheela L; Ramasarma T
    Biochim Biophys Acta; 1973 Jan; 292(1):50-63. PubMed ID: 4350174
    [No Abstract]   [Full Text] [Related]  

  • 15. Two mutations affecting utilization of C4-dicarboxylic acids by Escherichia coli.
    Herbert AA; Guest JR
    J Gen Microbiol; 1970 Oct; 63(2):151-62. PubMed ID: 4929473
    [No Abstract]   [Full Text] [Related]  

  • 16. [Oxidation of glutamate by pig heart sarcosomes: effects of inhibitors and NH4+ ions].
    Durand R; Pialoux N; Godinot C; Gautheron D
    Bull Soc Chim Biol (Paris); 1965; 47(11):2115-24. PubMed ID: 4379869
    [No Abstract]   [Full Text] [Related]  

  • 17. Localization of the oxaloacetate-binding site in the iron-flavoprotein subunit of the inhibitor-succinate dehydrogenase complex.
    Winter DB; King TE
    Biochem Biophys Res Commun; 1974 Jan; 56(2):290-5. PubMed ID: 4823868
    [No Abstract]   [Full Text] [Related]  

  • 18. Succinate oxidase in Neurospora.
    West DJ; Woodward DO
    J Bacteriol; 1973 Feb; 113(2):637-44. PubMed ID: 4266173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The membrane systems of the mitochondrion. II. The K fraction of the outer membrane of beef heart mitochondria.
    Allmann DW; Bachmann E; Green DE
    Arch Biochem Biophys; 1966 Jul; 115(1):165-71. PubMed ID: 5966513
    [No Abstract]   [Full Text] [Related]  

  • 20. STUDIES ON SPECIFIC ENZYME INHIBITORS. VI. CHARACTERIZATION AND MECHANISM OF ACTION OF THE ENZYME-INHIBITORY ISOMER OF MONOFLUOROCITRATE.
    FANSHIER DW; GOTTWALD LK; KUN E
    J Biol Chem; 1964 Feb; 239():425-34. PubMed ID: 14171850
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.