These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 5836544)

  • 1. Glutamic acid synthesis from acetate units and bicarbonate in extracts of photosynthetic bacteria.
    Benedict CR; Rinne RW
    Biochem Biophys Res Commun; 1964; 14():474-81. PubMed ID: 5836544
    [No Abstract]   [Full Text] [Related]  

  • 2. Biosynthesis of glutamate in photosynthetic bacteria.
    Shigesada K; Hidaka K; Katsuki H; Tanaka S
    Biochim Biophys Acta; 1966 Jan; 112(1):182-5. PubMed ID: 5947892
    [No Abstract]   [Full Text] [Related]  

  • 3. The pattern of utilization of respiratory metabolic intermediates by preimplantation rabbit embryos in vitro.
    Daniel JC
    Exp Cell Res; 1967 Sep; 47(3):619-24. PubMed ID: 6054032
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibition of pyruvate carboxylation by fluorocitrate in rat kidney mitochondria.
    Mehlman MA
    J Biol Chem; 1968 Apr; 243(8):1919-25. PubMed ID: 5646483
    [No Abstract]   [Full Text] [Related]  

  • 5. Citrate formation from exogenous substrates by washed human spermatozoa.
    Peterson RN; Freund M
    J Reprod Fertil; 1974 May; 38(1):73-9. PubMed ID: 4841383
    [No Abstract]   [Full Text] [Related]  

  • 6. Acetate and bicarbonate metabolism in photosynthetic bacteria.
    Rinne RW; Buckman RW; Benedict CR
    Plant Physiol; 1965 Nov; 40(6):1066-73. PubMed ID: 5842696
    [No Abstract]   [Full Text] [Related]  

  • 7. Fate of isotopic carbon in kidney mitochondria synthesizing precursors for glucose from pyruvate and bicarbonate.
    Mehlman MA
    J Biol Chem; 1968 Jun; 243(12):3289-95. PubMed ID: 5656370
    [No Abstract]   [Full Text] [Related]  

  • 8. Urinary excretion of citric acid cycle metabolites in premature newborn infants with and without a respiratory distress syndrome.
    Wu PY; Oh W; Polar E; Metcoff J
    Pediatrics; 1965 Dec; 36(6):856-60. PubMed ID: 5846827
    [No Abstract]   [Full Text] [Related]  

  • 9. Paths of carbon in gluconeogenesis and lipogenesis: the role of mitochondria in supplying precursors of phosphoenolpyruvate.
    Lardy HA; Paetkau V; Walter P
    Proc Natl Acad Sci U S A; 1965 Jun; 53(6):1410-5. PubMed ID: 5217643
    [No Abstract]   [Full Text] [Related]  

  • 10. Glutamate biosynthesis in Acetobacter suboxydans. VI. Formation from acetate plus pyruvate.
    Maragoudakis ME; Sekizawa Y; King TE; Cheldelin VH
    Biochemistry; 1966 Aug; 5(8):2646-53. PubMed ID: 5968575
    [No Abstract]   [Full Text] [Related]  

  • 11. Triglyceride synthesis from various precursors in adipose tissue of the rat during development.
    Hahn P; Greenberg R; Dobiásová M; Drahota Z
    Can J Biochem; 1968 Aug; 46(8):735-41. PubMed ID: 5672856
    [No Abstract]   [Full Text] [Related]  

  • 12. The role of general metabolites in the biosynthesis of natural products. I. The terpene marrubiin.
    Breccia A; Badiello R
    Z Naturforsch B; 1967 Jan; 22(1):44-9. PubMed ID: 4384825
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of diabetes, fatty acids, and ketone bodies on tricarboxylic acid cycle metabolism in the perfused rat heart.
    Bowman RH
    J Biol Chem; 1966 Jul; 241(13):3041-8. PubMed ID: 5912101
    [No Abstract]   [Full Text] [Related]  

  • 14. Evidence for the metabolic compartmentalization of acetyl-coenzyme A in rat brain slices and its relation to the syntheses of acetylcholine and glutamate.
    Nakamura R; Cheng SC
    Life Sci; 1969 Jun; 8(12):657-62. PubMed ID: 5804658
    [No Abstract]   [Full Text] [Related]  

  • 15. The synthesis of phosphoendolpyruvate from pyruvate and ATP by extracts of photosynthetic bacteria.
    Buchanan BB; Evans MC
    Biochem Biophys Res Commun; 1966 Mar; 22(5):484-7. PubMed ID: 5911083
    [No Abstract]   [Full Text] [Related]  

  • 16. Ionic control or renal gluconeogenesis. 3. The effects of changes in pH, pCO2, and bicarbonate concentration.
    Kurokawa K; Rasmussen H
    Biochim Biophys Acta; 1973 Jun; 313(1):42-58. PubMed ID: 4745680
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of pyruvate carboxylation in the energy-linked regulation of pool sizes of tricarboxylic acid-cycle intermediates in the myocardium.
    Peuhkurinen KJ; Nuutinen EM; Pietiläinen EP; Hiltunen JK; Hassinen IE
    Biochem J; 1982 Dec; 208(3):577-81. PubMed ID: 6131668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid oxidation in mitochondria isolated from rat submandibular salivary glands.
    Horak H; Pritchard ET
    Biochim Biophys Acta; 1971 Nov; 253(1):12-23. PubMed ID: 5126500
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver.
    Williamson JR; Kreisberg RA; Felts PW
    Proc Natl Acad Sci U S A; 1966 Jul; 56(1):247-54. PubMed ID: 4381783
    [No Abstract]   [Full Text] [Related]  

  • 20. Transport of metabolic substrates in renal mitochondria.
    Schoolwerth AC; LaNoue KF
    Annu Rev Physiol; 1985; 47():143-71. PubMed ID: 3888072
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.