These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 5837781)

  • 41. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86.
    Choudhary A; Modak A; Apte SK; Phale PS
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733285
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of synthesis of benzyl alcohol dehydrogenase in Acinetobacter calcoaceticus NCIB8250.
    Beggs JD; Fewson CA
    J Gen Microbiol; 1977 Nov; 103(1):127-40. PubMed ID: 201725
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of enzymes converting L-mandelate into benzoate in bacterium N.C.I.B. 8250.
    Livingstone A; Fewson CA
    Biochem J; 1971 Jan; 121(1):8P-9P. PubMed ID: 5116568
    [No Abstract]   [Full Text] [Related]  

  • 44. THE METABOLISM OF HALOGEN-SUBSTITUTED BENZOIC ACIDS BY PSEUDOMONAS FLUORESCENS.
    HUGHES DE
    Biochem J; 1965 Jul; 96(1):181-8. PubMed ID: 14343128
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative immunological studies of two Pseudomonas enzymes.
    Stanier RY; Wachter D; Gasser C; Wilson AC
    J Bacteriol; 1970 May; 102(2):351-62. PubMed ID: 4986759
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mandelate racemase and mandelate dehydrogenase coexpressed recombinant Escherichia coli in the synthesis of benzoylformate.
    Li D; Zeng Z; Yang J; Wang P; Jiang L; Feng J; Yang C
    Biosci Biotechnol Biochem; 2013; 77(6):1236-9. PubMed ID: 23748763
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [para-Aminobenzoic acid as a sole source of carbon and energy for Pseudomonas desmoliticum].
    Surovtseva EG; Karasevich IuN
    Mikrobiologiia; 1976 JUL-AUG; 45(4):650-4. PubMed ID: 1086418
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anaerobic biodegradation of aromatic compounds.
    Jothimani P; Kalaichelvan G; Bhaskaran A; Selvaseelan DA; Ramasamy K
    Indian J Exp Biol; 2003 Sep; 41(9):1046-67. PubMed ID: 15242297
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aromatic metabolism in the fungi. Growth of Rhodotorula mucilaginosa in p-hydroxybenzoate-limited chemostats and the effects of growth rate on the synthesis of enzymes of the 3-oxoadipate pathway.
    Huber TJ; Street JR; Bull AT; Cook KA; Cain RB
    Arch Microbiol; 1975; 102(2):139-44. PubMed ID: 1090273
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.
    Hernández-Arranz S; Moreno R; Rojo F
    Environ Microbiol; 2013 Jan; 15(1):227-41. PubMed ID: 22925411
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence for induced synthesis of an active transport factor for mandelate in Pseudomonas putida.
    Higgins SJ; Mandelstam J
    Biochem J; 1972 Feb; 126(4):917-22. PubMed ID: 5073242
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolism of DL-(+/-)-phenylalanine by Aspergillus niger.
    Kishore G; Sugumaran M; Vaidyanathan CS
    J Bacteriol; 1976 Oct; 128(1):182-91. PubMed ID: 10273
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The induction and repression of amino acid oxidation in Pseudomonas fluorescens.
    Jacoby GA
    Biochem J; 1964 Jul; 92(1):1-8. PubMed ID: 4378798
    [No Abstract]   [Full Text] [Related]  

  • 54. Regulation of synthesis of early enzymes of p-hydroxybenzoate pathway in Pseudomonas putida.
    Hosokawa K
    J Biol Chem; 1970 Oct; 245(20):5304-8. PubMed ID: 5469168
    [No Abstract]   [Full Text] [Related]  

  • 55. Aromatic acids are chemoattractants for Pseudomonas putida.
    Harwood CS; Rivelli M; Ornston LN
    J Bacteriol; 1984 Nov; 160(2):622-8. PubMed ID: 6501217
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Constitutivity of the mandelate enzymes in Acinetobacter calcoaceticus, N.C.I.B. 8250, and its effect on the synthesis of benzyl alcohol dehydrogenase.
    Moyes HM; Fewson CA
    Biochem Soc Trans; 1976; 4(6):1105-6. PubMed ID: 1022571
    [No Abstract]   [Full Text] [Related]  

  • 57. The coexistence of two pathways for the metabolism of 2-hydroxymuconic semialdehyde in a naphthalene-grown pseudomonad.
    Catterall FA; Sala-Trepat JM; Williams PA
    Biochem Biophys Res Commun; 1971 May; 43(3):463-9. PubMed ID: 4327441
    [No Abstract]   [Full Text] [Related]  

  • 58. OXIDATION OF PHENYLACETIC ACID BY A PSEUDOMONAS.
    DAGLEY S; WOOD JM
    Biochim Biophys Acta; 1965 May; 99():383-5. PubMed ID: 14336079
    [No Abstract]   [Full Text] [Related]  

  • 59. 2,3-dihydroxybenzoate 3,4-oxygenase from Pseudomonas fluorescens--oxidation of a substrate analog.
    Ribbons DW; Senior PJ
    Arch Biochem Biophys; 1970 Jun; 138(2):557-65. PubMed ID: 5433589
    [No Abstract]   [Full Text] [Related]  

  • 60. Possible transport mechanisms for mandelate and benzoate in bacterium N.C.I.B. 8250.
    Cook AM; Fewson CA
    Biochem J; 1972 Apr; 127(3):78P-79P. PubMed ID: 5076222
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.