These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 5840647)

  • 21. Lectin-carbohydrate recognition mechanism of Plasmodium berghei in the midgut of malaria vector Anopheles stephensi using quantum dot as a new approach.
    Basseri HR; Javazm MS; Farivar L; Abai MR
    Acta Trop; 2016 Apr; 156():37-42. PubMed ID: 26772447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Malaria case in Madagascar, probable implication of a new vector, Anopheles coustani.
    Nepomichene TN; Tata E; Boyer S
    Malar J; 2015 Dec; 14():475. PubMed ID: 26620552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induced immunity against the mosquito Anopheles stephensi (Diptera: Culicidae): effects of cell fraction antigens on survival, fecundity, and plasmodium berghei (Eucoccidiida: Plasmodiidae) transmission.
    Almeida AP; Billingsley PF
    J Med Entomol; 2002 Jan; 39(1):207-14. PubMed ID: 11931258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genotyping Plasmodium vivax isolates infecting Anopheles stephensi, an Asian main malaria vector.
    Gholizadeh S; Zakeri S; Djadid ND
    Exp Parasitol; 2013 May; 134(1):48-51. PubMed ID: 23384706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Susceptibility of the mosquitoes Anopheles minimus, An. sinensis, and An. saperoi (Diptera: Culicidae) from the Ryukyu Archipelago, Japan, to the rodent malaria Plasmodium yoelii nigeriense.
    Toma T; Miyagi I; Tamashiro M; Tsuzuki A
    J Med Entomol; 2002 Jan; 39(1):146-51. PubMed ID: 11931249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sporontocidal activity of the antimalarial WR-238605 against Plasmodium berghei ANKA in Anopheles stephensi.
    Coleman RE
    Am J Trop Med Hyg; 1990 Mar; 42(3):196-205. PubMed ID: 2180334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential gene expression in Anopheles stephensi following infection with drug-resistant Plasmodium yoelii.
    Zhang J; Huang J; Zhu F; Zhang J
    Parasit Vectors; 2017 Aug; 10(1):401. PubMed ID: 28851458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on sporozoite-induced infections of rodent malaria. 3. The course of sporozoite-induced Plasmodium berghei in different hosts.
    Nussenzweig R; Herman R; Vanderberg J; Yoeli M; Most H
    Am J Trop Med Hyg; 1966 Sep; 15(5):684-9. PubMed ID: 5917626
    [No Abstract]   [Full Text] [Related]  

  • 29. Noninfectious sporozoites in the salivary glands of a minimally susceptible anopheline mosquito.
    Noden BH; Pumpuni CB; Vaughan JA; Beier JC
    J Parasitol; 1995 Dec; 81(6):912-5. PubMed ID: 8544063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa.
    Faulde MK; Rueda LM; Khaireh BA
    Acta Trop; 2014 Nov; 139():39-43. PubMed ID: 25004439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemolymph of Anopheles stephensi from uninfected and Plasmodium berghei-infected mosquitoes. 2. Free amino acids.
    Mack SR; Samuels S; Vanderberg JP
    J Parasitol; 1979 Feb; 65(1):130-6. PubMed ID: 376812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection.
    Shrinet J; Nandal UK; Adak T; Bhatnagar RK; Sunil S
    PLoS One; 2014; 9(12):e114461. PubMed ID: 25474020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of variation in temperature on development of Plasmodium berghei (NK 65 strain) in Anopheles stephensi.
    Rastogi M; Pal NL; Sen AB
    Folia Parasitol (Praha); 1987; 34(4):289-97. PubMed ID: 3322990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A virulent chloroquine-resistant strain of Plasmodium berghei berghei transmitted through Anopheles stephensi.
    Peters W; Robinson BL; Ramkaran AE; Portus JH
    Trans R Soc Trop Med Hyg; 1969; 63(1):8. PubMed ID: 5789118
    [No Abstract]   [Full Text] [Related]  

  • 35. Estimate of Plasmodium falciparum sporozoite content of Anopheles stephensi used to challenge human volunteers.
    Davis JR; Murphy JR; Clyde DF; Baqar S; Cochrane AH; Zavala F; Nussenzweig RS
    Am J Trop Med Hyg; 1989 Feb; 40(2):128-30. PubMed ID: 2645802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Susceptibility of wild and colonized Anopheles stephensi to Plasmodium vivax infection.
    Mohanty AK; Nina PB; Ballav S; Vernekar S; Parkar S; D'souza M; Zuo W; Gomes E; Chery L; Tuljapurkar S; Valecha N; Rathod PK; Kumar A
    Malar J; 2018 Jun; 17(1):225. PubMed ID: 29871629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prevention of sporogony of Plasmodium falciparum and P. berghei in Anopheles stephensi mosquitoes by transmission-blocking antimalarials.
    Coleman RE; Nath AK; Schneider I; Song GH; Klein TA; Milhous WK
    Am J Trop Med Hyg; 1994 May; 50(5):646-53. PubMed ID: 8203716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rodent systems (Plasmodium berghei-Anopheles Stephensi) for screening compounds for potential causal prophylaxis.
    Most H; Montuori WA
    Am J Trop Med Hyg; 1975 Mar; 24(2):179-82. PubMed ID: 1091166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced transmission of malaria parasites to mosquitoes in a murine model of type 2 diabetes.
    Pakpour N; Cheung KW; Luckhart S
    Malar J; 2016 Apr; 15():231. PubMed ID: 27102766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid identification of Plasmodium-carrying mosquitoes using loop-mediated isothermal amplification.
    Aonuma H; Suzuki M; Iseki H; Perera N; Nelson B; Igarashi I; Yagi T; Kanuka H; Fukumoto S
    Biochem Biophys Res Commun; 2008 Nov; 376(4):671-6. PubMed ID: 18809384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.