These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 5842071)

  • 1. Bacterial degradation of riboflavin. VI. Enzymatic conversion of riboflavin to 1-ribityl-2,3-diketo-1,2,3,4-tetrahydro-6, 7-dimethylquinoxaline, urea, and carbon dioxide.
    Harkness DR; Stadtman ER
    J Biol Chem; 1965 Oct; 240(10):4089-96. PubMed ID: 5842071
    [No Abstract]   [Full Text] [Related]  

  • 2. Bacterial degradation of riboflavin. VII. Studies on the bacterial decomposition of 6,7-dimethylquinoxaline-2,3-diol.
    Barz W; Stadtman ER
    Arch Mikrobiol; 1969; 67(2):128-40. PubMed ID: 5386178
    [No Abstract]   [Full Text] [Related]  

  • 3. BACTERIAL DEGRADATION PRODUCTS OF RIBOFLAVIN. IV. OXIDATIVE CLEAVAGE OF 1-RIBITYL-2,3-DIKETO-1,2,3, 4-TETRAHYDRO-6,7-DIMETHYLQUINOXALINE TO 6,7-DIMETHYLQUINOXALINE-2,3-DIOL AND RIBOSE.
    TSAI L; SMYRNIOTIS PZ; HARKNESS D; STADTMAN ER
    Biochem Z; 1963; 338():561-81. PubMed ID: 14087324
    [No Abstract]   [Full Text] [Related]  

  • 4. Urinary lumichrome-level catabolites of riboflavin are due to microbial and photochemical events and not rat tissue enzymatic cleavage of the ribityl chain.
    Oka M; McCormick DB
    J Nutr; 1985 Apr; 115(4):496-9. PubMed ID: 3981268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Debromination of (alpha-bromoiso-valeryl)urea catalysed by rat blood.
    Kitamura S; Kuwasako M; Sugihara K; Tatsumi K; Ohta S
    J Pharm Pharmacol; 1999 Jan; 51(1):73-8. PubMed ID: 10197421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. REACTIONS OF MOLYBDENUM COMPOUNDS WITH RIBOFLAVIN.
    MITCHELL PC; WILLIAMS RJ
    Biochim Biophys Acta; 1964 Apr; 86():39-45. PubMed ID: 14166870
    [No Abstract]   [Full Text] [Related]  

  • 7. Uncoupling of the substrate monooxygenation and reduced pyridine nucleotide oxidation activities of salicylate hydroxylase by flavins.
    Tu SC; Romero FA; Wang LH
    Arch Biochem Biophys; 1981 Jul; 209(2):423-32. PubMed ID: 7294803
    [No Abstract]   [Full Text] [Related]  

  • 8. Specificity of inhibition of muscle glycogen phosphorylase b by flavins.
    Klinov SV; Kurganov BI
    Biochem Mol Biol Int; 1995 Mar; 35(3):643-50. PubMed ID: 7773199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Component Flavin-Dependent Riboflavin Monooxygenase Degrades Riboflavin in Devosia riboflavina.
    Kanazawa H; Shigemoto R; Kawasaki Y; Oinuma KI; Nakamura A; Masuo S; Takaya N
    J Bacteriol; 2018 Jun; 200(12):. PubMed ID: 29610214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced riboflavin incorporation into flavins in newborn riboflavin-deficient rats.
    Muttart C; Chaudhuri R; Pinto J; Rivlin RS
    Am J Physiol; 1977 Nov; 233(5):E397-401. PubMed ID: 920802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavin nucleotide coenzyme biosynthesis and its relation to corticosteroidogenesis in the rat adrenal.
    Fazekas AG; Sandor T
    Endocrinology; 1971 Aug; 89(2):397-407. PubMed ID: 4326788
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification of the covalently bound flavins of D-gluconate dehydrogenases from Pseudomonas aeruginosa and Pseudomonas fluorescens and of 2-keto-D-gluconate dehydrogenase from Gluconobacter melanogenus.
    McIntire W; Singer TP; Ameyama M; Adachi O; Matsushita K; Shinagawa E
    Biochem J; 1985 Nov; 231(3):651-4. PubMed ID: 4074328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The stimulation of microsomal azoreduction by flavins.
    Fujita S; Peisach J
    Biochim Biophys Acta; 1982 Nov; 719(2):178-89. PubMed ID: 7150636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulphite reductase from bakers' yeast: a haemoflavoprotein.
    Prabhakararao K; Nicholas DJ
    Biochim Biophys Acta; 1969 Jun; 180(2):253-63. PubMed ID: 4389532
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of flavins on the rate of proteolytic digestion of muscle glycogen phosphorylase b.
    Kurganov BI; Schors EI; Livanova NB; Chebotareva NA; Eronina TB; Andreeva IE; Makeeva VP; Pekel ND
    Biochimie; 1993; 75(6):481-5. PubMed ID: 8364099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nondisplacement of rat tissue riboflavin by 7-chloro-8-methyl-flavin and the stimulation of intestinal synthesis of riboflavin.
    Lambooy JP; Scala RA; Homan E
    J Nutr; 1970 Aug; 100(8):883-91. PubMed ID: 5495841
    [No Abstract]   [Full Text] [Related]  

  • 17. Intestinal absorption of riboflavin, studied by an in situ circulation system using radioactive analogues.
    Kasai S; Nakano H; Kinoshita T; Miyake Y; Maeda K; Matsui K
    J Nutr Sci Vitaminol (Tokyo); 1988 Jun; 34(3):265-80. PubMed ID: 3183777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BACTERIAL DEGRADATION OF RIBOFLAVIN. V. STOICHIOMETRY OF RIBOFLAVIN DEGRADATION TO OXAMIDE AND OTHER PRODUCTS, OXIDATION OF C14-LABELED INTERMEDIATES AND ISOLATION OF THE PSEUDOMONAD EFFECTING THESE TRANSFORMATIONS.
    HARKNESS DR; TSAI L; STADTMAN ER
    Arch Biochem Biophys; 1964 Nov; 108():323-33. PubMed ID: 14240585
    [No Abstract]   [Full Text] [Related]  

  • 19. Unusual toxicity of riboflavin and flavin mononucleotide for Cardiobacterium hominis.
    Slotnick IJ; Dougherty M
    Antonie Van Leeuwenhoek; 1965; 31(4):355-60. PubMed ID: 5296352
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on the biosynthesis of flavin nucleotides from 2- 14 C-riboflavin by rat liver and kidney.
    Fazekas AG; Sandor T
    Can J Biochem; 1973 Jun; 51(6):772-82. PubMed ID: 4717063
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.