These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 5846978)

  • 1. Formation of methane from serine by cell-free extracts of Methanobacillus omelianskii.
    Wood JM; Allam AM; Brill WJ; Wolfe RS
    J Biol Chem; 1965 Dec; 240(12):4564-9. PubMed ID: 5846978
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydrogen-oxidizing methane bacteria. I. Cultivation and methanogenesis.
    Bryant MP; McBride BC; Wolfe RS
    J Bacteriol; 1968 Mar; 95(3):1118-23. PubMed ID: 5651323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cobalamin product of the conversion of methylcobalamin to CH4 by extracts of methanobacillus omelianskii.
    Wolin MJ; Wolin EA; Wolfe RS
    Biochem Biophys Res Commun; 1964 Apr; 15(5):420-3. PubMed ID: 5827787
    [No Abstract]   [Full Text] [Related]  

  • 4. Viologen dye inhibition of methane formation by Methanobacillus omelianskii.
    Wolin EA; Wolfe RS; Wolin MJ
    J Bacteriol; 1964 May; 87(5):993-8. PubMed ID: 5874549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkylation of an enzyme in the methane-forming system of Methanobacillus omelianskii.
    Wood JM; Wolfe RS
    Biochem Biophys Res Commun; 1966 Jan; 22(1):119-23. PubMed ID: 5937327
    [No Abstract]   [Full Text] [Related]  

  • 6. Formation of methane from methyl factor B and methyl factor 3 by cell-free extracts of Methanobacillus omelianskii.
    Wood JM; Wolin MJ; Wolfe RS
    Biochemistry; 1966 Jul; 5(7):2381-4. PubMed ID: 5959462
    [No Abstract]   [Full Text] [Related]  

  • 7. Components required for the formation of CH-4 from methylcobalamin by extracts of Methanobacillus omelianskii.
    Wood JM; Wolfe RS
    J Bacteriol; 1966 Sep; 92(3):696-700. PubMed ID: 4288494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total synthesis of acetate from CO2 by heterotrophic bacteria.
    Ljungdahl LG
    Annu Rev Microbiol; 1969; 23():515-38. PubMed ID: 4899080
    [No Abstract]   [Full Text] [Related]  

  • 9. [Participation of subcellular fractions in the formation of methane from CH3B-12 by cell-free extracts from Methanobacillus kuzneceovii].
    Pantskhava ES; Syromiatnikov EIu
    Dokl Akad Nauk SSSR; 1973 Jul; 211(2):488-90. PubMed ID: 4730571
    [No Abstract]   [Full Text] [Related]  

  • 10. Tetrahydrofolate-dependent enzyme activities of the rat liver in riboflavin deficiency.
    Narisawa K; Tamura T; Tanno K; Ohara K; Arakawa T
    Tohoku J Exp Med; 1968 Apr; 94(4):417-30. PubMed ID: 4970398
    [No Abstract]   [Full Text] [Related]  

  • 11. Diurnal variations of liver folate metabolism in rats maintained under controlled feeding schedules.
    Barbiroli B; Bovina C; Tolomelli B; Marchetti M
    Proc Soc Exp Biol Med; 1974 Feb; 145(2):645-7. PubMed ID: 4814158
    [No Abstract]   [Full Text] [Related]  

  • 12. [Effect of visible light on the formation of methane from methyl-B12 by cell-free extracts of Methanobacillus kuzneceovii].
    Pantskhava ES
    Dokl Akad Nauk SSSR; 1973 Jan; 208(3):736-8. PubMed ID: 4686300
    [No Abstract]   [Full Text] [Related]  

  • 13. [Formation of methane and acetic acid from methylcobalamine by cell free extracts of Methanobacillus kuzneceovii].
    Pantskhava ES; Pchelkina VV; Bukin VN
    Biokhimiia; 1973; 38(3):507-14. PubMed ID: 4780949
    [No Abstract]   [Full Text] [Related]  

  • 14. Methane formation; fermentation of ethanol in the absence of carbon dioxide by Methanobacillus omelianskii.
    JOHNS AT; BARKER HA
    J Bacteriol; 1960 Dec; 80(6):837-41. PubMed ID: 13790217
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of thyrotoxicosis on folate coenzymes and related enzymes in rat liver.
    Pasquali P; Landi L; Bovina C; Marchetti M
    Endocrinology; 1970 May; 86(5):1163-6. PubMed ID: 5435253
    [No Abstract]   [Full Text] [Related]  

  • 16. Subcellular distribution of some folic acid-linked enzymes in rat liver.
    Brown SS; Neal GE; Williams DC
    Biochem J; 1965 Dec; 97(3):34C-36C. PubMed ID: 5881649
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of dihydrofolate reductase and other folate-requiring enzymes.
    Bertino JR; Hillcoat BL
    Adv Enzyme Regul; 1968; 6():335-49. PubMed ID: 4888607
    [No Abstract]   [Full Text] [Related]  

  • 18. [Effect of ATP, ADP and AMP on the formation of methane from methylcobalamin by cell-free extracts of Methanobacillus kuzneceovii].
    Pantskhava ES; Bukin VN
    Dokl Akad Nauk SSSR; 1972 Sep; 206(2):494-6. PubMed ID: 4634389
    [No Abstract]   [Full Text] [Related]  

  • 19. Control of one-carbon metabolism in a methionine-B12 auxotroph of Escherichia coli.
    Taylor RT; Dickerman H; Weissbach H
    Arch Biochem Biophys; 1966 Nov; 117(2):405-12. PubMed ID: 5339713
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies with a mathematical model of folate metabolism.
    Jackson RC; Harrap KR
    Arch Biochem Biophys; 1973 Oct; 158(2):827-41. PubMed ID: 4273804
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.