These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 5846987)

  • 1. The clostridial fermentations of choline and ethanolamine. 1. Preparation and properties of cell-free extracts.
    Bradbeer C
    J Biol Chem; 1965 Dec; 240(12):4669-74. PubMed ID: 5846987
    [No Abstract]   [Full Text] [Related]  

  • 2. The clostridial fermentations of choline and ethanolamine. II. Requirement for a cobamide coenzyme by an ethanolamine deaminase.
    Bradbeer C
    J Biol Chem; 1965 Dec; 240(12):4675-81. PubMed ID: 5846988
    [No Abstract]   [Full Text] [Related]  

  • 3. Incorporation of formate-14C, acetate-1-14C choline-1,2-14C and ethanolamine-1-2-14C into rabbit ovarian phospholipids.
    Morin RJ
    Life Sci; 1969 Jun; 8(12):613-6. PubMed ID: 5804654
    [No Abstract]   [Full Text] [Related]  

  • 4. In vitro incorporation of 14C labeled precursors into swine coronary arterial phospholipids.
    Morin RJ
    Experientia; 1970 Nov; 26(11):1214-5. PubMed ID: 5485281
    [No Abstract]   [Full Text] [Related]  

  • 5. Coenzyme specificity of dehydrogenases and fermentation of pyruvate by clostridia.
    von Hugo H; Schoberth S; Madan VK; Gottschalk G
    Arch Mikrobiol; 1972; 87(3):189-202. PubMed ID: 4404815
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of estradiol on the phospholipid biosynthesis from choline-1,2-14C ethanolamine-2-14C and serine-3-14C in rat uterus and liver.
    Nishigori H; Aizawa Y
    Jpn J Pharmacol; 1968 Dec; 18(4):397-405. PubMed ID: 5304858
    [No Abstract]   [Full Text] [Related]  

  • 7. (14C) acetylcholine synthesis by cortex slices of rat brain.
    Browning ET; Schulman MP
    J Neurochem; 1968 Dec; 15(12):1391-405. PubMed ID: 5729420
    [No Abstract]   [Full Text] [Related]  

  • 8. Phosphorylation of choline and ethanolamine in Ehrlich ascites-carcinoma cells.
    Sung CP; Johnstone RM
    Biochem J; 1967 Nov; 105(2):497-503. PubMed ID: 5626092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferredoxin-dependent synthesis of labelled pyruvate from labelled acetyl coenzyme A and carbon dioxide.
    Buchanan BB; Arnon DI
    Biochem Biophys Res Commun; 1965 Jul; 20(2):163-8. PubMed ID: 5850680
    [No Abstract]   [Full Text] [Related]  

  • 10. The conversion of carbon dioxide to acetate. I. The use of cobalt-methylcobalamin as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum.
    Poston JM; Kuratomi K; Stadtman ER
    J Biol Chem; 1966 Sep; 241(18):4209-16. PubMed ID: 5924642
    [No Abstract]   [Full Text] [Related]  

  • 11. Total synthesis of acetate from CO2. I. Co-methylcobyric acid and CO-(methyl)-5-methoxybenzimidazolylcobamide as intermediates with Clostridium thermoaceticum.
    Ljungdahl L; Irion E; Wood HG
    Biochemistry; 1965 Dec; 4(12):2771-80. PubMed ID: 5880685
    [No Abstract]   [Full Text] [Related]  

  • 12. Increased incorporation of methyl-14C-choline, methyl-14C-methionine and 1,2-14C-ethanolamine into phospholipids by liver slices from pregnant rats.
    Weinhold PA
    Endocrinology; 1969 Dec; 85(6):1216-7. PubMed ID: 5388415
    [No Abstract]   [Full Text] [Related]  

  • 13. The effect of vasopressin on lipogenesis in vitro.
    Horowitz I; Beck JC; Rubinstein D
    J Biol Chem; 1966 Mar; 241(5):1031-5. PubMed ID: 5933862
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolic characteristics of preparations of isolated sheep thyroid gland cells. 3. Oxidation of substrates involved in carbohydrate metabolism and the Krebs cycle.
    Abraham S; Kopelovich L; Chaikoff IL
    Endocrinology; 1965 Nov; 77(5):863-72. PubMed ID: 5843906
    [No Abstract]   [Full Text] [Related]  

  • 15. The conversion of carbon dioxide to acetate. II. The role of alpha-ketoisovalerate in the synthesis of acetate by Clostridium thermoaceticum.
    Kuratomi K; Stadtman ER
    J Biol Chem; 1966 Sep; 241(18):4217-23. PubMed ID: 5924643
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of ferrous ions, tungstate and selenite on the level of formate dehydrogenase in Clostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation.
    Andreesen JR; El Ghazzawi E; Gottschalk G
    Arch Mikrobiol; 1974 Mar; 96(2):103-18. PubMed ID: 4836256
    [No Abstract]   [Full Text] [Related]  

  • 17. Carbon dioxide activation in the pyruvate clastic system of Clostridium butyricum.
    MORTLOCK RP; VALENTINE RC; WOLFE RS
    J Biol Chem; 1959 Jul; 234(7):1653-6. PubMed ID: 13672938
    [No Abstract]   [Full Text] [Related]  

  • 18. Anaerobic degradation of choline. III. Acetaldehyde as an intermediate in the fermentation of choline by extracts of Vibrio cholinicus.
    HAYWARD HR
    J Biol Chem; 1960 Dec; 235():3592-6. PubMed ID: 13712528
    [No Abstract]   [Full Text] [Related]  

  • 19. Considerations on the energy metabolism of Clostridium kluyveri.
    Schoberth S; Gottschalk G
    Arch Mikrobiol; 1969; 65(4):318-28. PubMed ID: 5384695
    [No Abstract]   [Full Text] [Related]  

  • 20. Impaired labelling of liver phosphatidylethanolamine from ethanolamine-14C in choline deficiency.
    Haines DS; Rose CI
    Can J Biochem; 1970 Aug; 48(8):885-92. PubMed ID: 5452726
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.