These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 5855046)

  • 1. Enzyme and hemoglobin retention in human erythrocyte stroma.
    Mitchell CD; Mitchell WB; Hanahan DJ
    Biochim Biophys Acta; 1965 Jul; 104(2):348-58. PubMed ID: 5855046
    [No Abstract]   [Full Text] [Related]  

  • 2. Organization of enzymes in human erythrocyte membranes.
    Schrier SL
    Am J Physiol; 1966 Jan; 210(1):139-45. PubMed ID: 5903135
    [No Abstract]   [Full Text] [Related]  

  • 3. Paroxysmal nocturnal hemoglobinuria in childhood and adolescence. Clinical and erythrocyte metabolic studies in two cases.
    Miller DR; Baehner RL; Diamond LK
    Pediatrics; 1967 May; 39(5):675-88. PubMed ID: 4226100
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterization of enzyme-enzyme interaction using an affinity batch system.
    Kálmán M; Boross L
    Biochim Biophys Acta; 1982 Jun; 704(2):272-7. PubMed ID: 7104369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemoglobin binds to the amino-terminal 23-residue fragment of human erythrocyte band 3 protein.
    Murthy SN; Kaul RK; Köhler H
    Hoppe Seylers Z Physiol Chem; 1984 Jan; 365(1):9-17. PubMed ID: 6714938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of enzymes of glycolysis and of glutathione metabolism in human red cell membranes.
    Tillman W; Cordua A; Schröter W
    Biochim Biophys Acta; 1975 Mar; 382(2):157-71. PubMed ID: 164242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of enzymes in red blood cell membranes by a basic protein isolated from cobra venom.
    Fajnholc N; Condrea E; De Vries A
    Biochim Biophys Acta; 1972 Mar; 255(3):850-7. PubMed ID: 5063095
    [No Abstract]   [Full Text] [Related]  

  • 8. Enzyme-polymer adducts of aldolase, glyceraldehydephosphate dehydrogenase, and fructosediphosphatase.
    Falb RD; Lynn J; Shapira J
    Experientia; 1973 Aug; 29(8):958-9. PubMed ID: 4354754
    [No Abstract]   [Full Text] [Related]  

  • 9. Aldolase-catalysed inactivation of glyceraldehyde-3-phosphate dehydrogenase.
    Patthy L; Vas M
    Nature; 1978 Nov; 276(5683):94-5. PubMed ID: 740028
    [No Abstract]   [Full Text] [Related]  

  • 10. Enzyme activities and maximal rates of glycolysis in anaerobic myocardium.
    Reeves RB
    Am J Physiol; 1966 Jan; 210(1):73-8. PubMed ID: 4221771
    [No Abstract]   [Full Text] [Related]  

  • 11. Cooperative effect of fructose bisphosphate and glyceraldehyde-3-phosphate dehydrogenase on aldolase action.
    Neuzil J; Danielson H; Welch GR; Ovádi J
    Biochim Biophys Acta; 1990 Mar; 1037(3):307-12. PubMed ID: 2106914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histochemical method for demonstrating aldolase.
    Abe T; Shimizu N
    Histochemie; 1964 Sep; 4(3):209-12. PubMed ID: 4283935
    [No Abstract]   [Full Text] [Related]  

  • 13. Transient-state kinetic evidence against a channelled transfer of glyceraldehyde 3-phosphate from aldolase to glyceraldehyde-3-phosphate dehydrogenase.
    Martínez Arias W; Pettersson G
    Eur J Biochem; 1996 Aug; 239(3):675-8. PubMed ID: 8774712
    [No Abstract]   [Full Text] [Related]  

  • 14. Exploring CP12 binding proteins revealed aldolase as a new partner for the phosphoribulokinase/glyceraldehyde 3-phosphate dehydrogenase/CP12 complex--purification and kinetic characterization of this enzyme from Chlamydomonas reinhardtii.
    Erales J; Avilan L; Lebreton S; Gontero B
    FEBS J; 2008 Mar; 275(6):1248-59. PubMed ID: 18266760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical evidence against the concept of an interaction between aldolase and glyceraldehyde-3-phosphate dehydrogenase.
    Masters CJ; Winzor DJ
    Arch Biochem Biophys; 1981 Jun; 209(1):185-90. PubMed ID: 7283437
    [No Abstract]   [Full Text] [Related]  

  • 16. Some evidence in favour of the partnership between rabbit muscle aldolase and glyceraldehyde 3-phosphate dehydrogenase in the consecutive reactions.
    Chumachenko YV
    Ukr Biokhim Zh (1978); 1994; 66(6):52-7. PubMed ID: 7785086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of phosphofructokinase with erythrocyte membranes.
    Higashi T; Richards CS; Uyeda K
    J Biol Chem; 1979 Oct; 254(19):9542-50. PubMed ID: 39927
    [No Abstract]   [Full Text] [Related]  

  • 18. Cross-linking and coupling of rabbit muscle aldolase and glyceraldehyde-3-phosphate dehydrogenase by glutaraldehyde.
    Hajdu J; Solti M; Friedrich P
    Acta Biochim Biophys Acad Sci Hung; 1975; 10(1-2):7-16. PubMed ID: 807079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of the bovine erythrocyte membrane. Release of enzymes and lipid components.
    Burger SP; Fujii T; Hanahan DJ
    Biochemistry; 1968 Oct; 7(10):3682-700. PubMed ID: 4878704
    [No Abstract]   [Full Text] [Related]  

  • 20. Red cell zinc and red cell zinc metalloenzymes in hyperthyroidism.
    Pangaro JA; Weinstein M; Devetak MC; Soto RJ
    Acta Endocrinol (Copenh); 1974 Aug; 76(4):645-50. PubMed ID: 4210572
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.