These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Amphotericin B-induced active transport of K+ and the Na+-K+ flux ratio in frog corneal epithelium. Candia OA; Reinach PS; Alvarez L Am J Physiol; 1984 Nov; 247(5 Pt 1):C454-61. PubMed ID: 6093573 [TBL] [Abstract][Full Text] [Related]
23. Potassium flux in smooth muscle of frog stomach. Stephenson EW Am J Physiol; 1976 Mar; 230(3):743-53. PubMed ID: 1266979 [TBL] [Abstract][Full Text] [Related]
25. Active sodium uptake by the skin of foetal sheep and pigs. France VM J Physiol; 1976 Jun; 258(2):377-92. PubMed ID: 957162 [TBL] [Abstract][Full Text] [Related]
29. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport. Erlij D; Smith MW J Physiol; 1973 Jan; 228(1):221-39. PubMed ID: 4539864 [TBL] [Abstract][Full Text] [Related]
30. Binding of [3H]ouabain to split frog skin: the role of the Na,K-ATPase in the generation of short circuit current. Cala PM; Cogswell N; Mandel LJ J Gen Physiol; 1978 Apr; 71(4):347-67. PubMed ID: 26728 [TBL] [Abstract][Full Text] [Related]
31. Chloride dependence of active sodium transport in frog skin: the role of intercellular spaces. Ferreira KT; Hill BS J Physiol; 1978 Oct; 283():283-305. PubMed ID: 102765 [TBL] [Abstract][Full Text] [Related]
32. Ouabain-sensitive H+-K+ exchange mechanism in the apical membrane of guinea pig colon. Suzuki Y; Kaneko K Am J Physiol; 1989 Jun; 256(6 Pt 1):G979-88. PubMed ID: 2735416 [TBL] [Abstract][Full Text] [Related]
33. Effect of ouabain and metabolic inhibitors on the Na and K movements and nucleotide contents of L cells. Lamb JF; MacKinnon MG J Physiol; 1971 Mar; 213(3):665-82. PubMed ID: 5102532 [TBL] [Abstract][Full Text] [Related]
34. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell. Wiley JS; Cooper RA J Clin Invest; 1974 Mar; 53(3):745-55. PubMed ID: 4812437 [TBL] [Abstract][Full Text] [Related]
35. Potassium transport across the frog retinal pigment epithelium. Miller SS; Steinberg RH J Membr Biol; 1982; 67(3):199-209. PubMed ID: 6980989 [TBL] [Abstract][Full Text] [Related]
36. Chloride transport across isolated skin of Rana pipiens. Alvarado RH; Dietz TH; Mullen TL Am J Physiol; 1975 Sep; 229(3):869-76. PubMed ID: 1082245 [TBL] [Abstract][Full Text] [Related]
37. Passive transepithelial cationic fluxes across the frog skin under short-circuit conditions. Tanaka H; Imai Y Jpn J Physiol; 1989; 39(1):43-50. PubMed ID: 2786101 [TBL] [Abstract][Full Text] [Related]
38. Sodium and potassium fluxes and membrane potential of human neutrophils: evidence for an electrogenic sodium pump. Simchowitz L; Spilberg I; De Weer P J Gen Physiol; 1982 Mar; 79(3):453-79. PubMed ID: 6281359 [TBL] [Abstract][Full Text] [Related]
39. Ion transport in Hydrodictyon africanum. Raven JA J Gen Physiol; 1967 Jul; 50(6):1607-25. PubMed ID: 6034760 [TBL] [Abstract][Full Text] [Related]
40. Influence of transepithelial potential difference on the sodium uptake at the outer surface of the isolated frog skin. Biber TU; Sanders ML J Gen Physiol; 1973 May; 61(5):529-51. PubMed ID: 4540958 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]