These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 5860592)

  • 21. [Effect of caffeine on kinetics of accumulation and release of Ca2+ by vesicles of the sarcoplasmic reticulum of skeletal muscle].
    Diadiusha GP
    Ukr Biokhim Zh (1978); 1985; 57(6):56-62. PubMed ID: 4071684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A possible explanation for effects of Sr2+ on contraction-relaxation cycle in canine stomach.
    Yasuda N; Sakai Y
    Comp Biochem Physiol A Comp Physiol; 1984; 78(1):35-41. PubMed ID: 6146436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relationship between activation heat and calcium transients in frog sartorius muscle.
    Chaplain RA; Pfister E
    Experientia; 1970 May; 26(5):505-6. PubMed ID: 5444832
    [No Abstract]   [Full Text] [Related]  

  • 24. Energy-coupling in mitochondria during resting or state 4 respiration.
    Carafoli E; Rossi CS; Lehninger AL
    Biochem Biophys Res Commun; 1965 May; 19(5):609-14. PubMed ID: 5834712
    [No Abstract]   [Full Text] [Related]  

  • 25. Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection.
    Christoffersen J; Christoffersen MR; Kolthoff N; Bärenholdt O
    Bone; 1997 Jan; 20(1):47-54. PubMed ID: 8988347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of ruthenium red on the Ca2+ and Sr2+ efflux from rat liver mitochondria: influence of nupercaine.
    Pezzi L
    Biosci Rep; 1984 Mar; 4(3):231-7. PubMed ID: 6202338
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional sensitivity of the native skeletal Ca(2+)-release channel to divalent cations and the Mg-ATP complex.
    Rousseau E; Pinkos J; Savaria D
    Can J Physiol Pharmacol; 1992 Mar; 70(3):394-402. PubMed ID: 1318162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The actions of barium and strontium on exocytosis and endocytosis in the synaptic terminal of goldfish bipolar cells.
    Neves G; Neef A; Lagnado L
    J Physiol; 2001 Sep; 535(Pt 3):809-24. PubMed ID: 11559777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium and strontium activation of single skinned muscle fibres of normal and dystrophic mice.
    Fink RH; Stephenson DG; Williams DA
    J Physiol; 1986 Apr; 373():513-25. PubMed ID: 3746681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mechanistic model for the uptake of waterborne strontium in the common carp (Cyprinus carpio L.).
    Chowdhury MJ; Blust R
    Environ Sci Technol; 2001 Feb; 35(4):669-75. PubMed ID: 11349276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strontium induces murine keratinocyte differentiation in vitro in the presence of serum and calcium.
    Li L; Kruszewski FH; Punnonen K; Tucker RW; Yuspa SH; Hennings H
    J Cell Physiol; 1993 Mar; 154(3):643-53. PubMed ID: 7679679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. STUDIES ON THE MICRO-INJECTION OF VARIOUS SUBSTANCES INTO CRAB MUSCLE FIBRES.
    CALDWELL PC; WALSTER G
    J Physiol; 1963 Nov; 169(2):353-72. PubMed ID: 14079672
    [No Abstract]   [Full Text] [Related]  

  • 33. Ca2+ and Sr2+ entry induced Ca2+ release from the intracellular Ca2+ store in smooth muscle cells of rat portal vein.
    Grégoire G; Loirand G; Pacaud P
    J Physiol; 1993 Dec; 472():483-500. PubMed ID: 8145155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ca(2+)- and Sr(2+)-sensitive ATPase activity of slow skeletal myofibrils in comparison with fast skeletal and cardiac myofibrils.
    Kambara M
    Fukuoka Igaku Zasshi; 1994 Jan; 85(1):5-13. PubMed ID: 8163263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat.
    McCormack JG; Denton RM
    Biochem J; 1980 Jul; 190(1):95-105. PubMed ID: 6778477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of tissue Ca2+ gain during reoxygenation after hypoxia in rabbit myocardium.
    Nakanishi T; Nishioka K; Jarmakani JM
    Am J Physiol; 1982 Mar; 242(3):H437-49. PubMed ID: 7065204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The exchange of radioactive cations by somatic and cardiac muscles of the crayfish.
    Van der Kloot WG
    Comp Biochem Physiol; 1966 Mar; 17(3):1019-43. PubMed ID: 5943904
    [No Abstract]   [Full Text] [Related]  

  • 38. Structural and enzymatic properties of the calcium transporting membranes of the sarcoplasmic reticulum.
    Hasselbach W
    Ann N Y Acad Sci; 1966 Jul; 137(2):1041-8. PubMed ID: 5229806
    [No Abstract]   [Full Text] [Related]  

  • 39. A new mechanism by which an H+ concentration gradient drives the synthesis of adenosine triphosphate, pH jump, and adenosine triphosphate synthesis by the Ca2+-dependnet adenosine triphosphatase of sarcoplasmic reticulum.
    de Meis L; Tume RK
    Biochemistry; 1977 Oct; 16(20):4455-63. PubMed ID: 20933
    [No Abstract]   [Full Text] [Related]  

  • 40. The effects of Zn2+ on the uptake of Ca2+, Sr2+ and Ba2+ by bone powder and anorganic bone.
    Samachson J; Schmitz A
    Biochim Biophys Acta; 1969 Nov; 192(2):238-42. PubMed ID: 5392507
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.