BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 5862237)

  • 1. Oligonucleotide composition of enzymatic hydrolyzates of yeast valine-specific transfer RNA.
    Bayev AA; Venkstern TV; Mirsabekov AD; Krutilina AI; Li L; Axelrod VD
    Biochim Biophys Acta; 1965 Sep; 108(1):162-4. PubMed ID: 5862237
    [No Abstract]   [Full Text] [Related]  

  • 2. On the bias of the distribution of the 2'-O-methylribonucleotide constituents of yeast transfer RNA.
    Morisawa S; Chargaff E
    Biochim Biophys Acta; 1968 Dec; 169(2):285-96. PubMed ID: 4302867
    [No Abstract]   [Full Text] [Related]  

  • 3. Sequence variation at the 5-terminal region in yeast s-RNA.
    McLaughlin CS; Ingram VM
    Biochim Biophys Acta; 1965 Jun; 103(2):344-6. PubMed ID: 5835624
    [No Abstract]   [Full Text] [Related]  

  • 4. The primary structure of valine-I transfer ribonucleic acid from Torulopsis utilis. II. Partial digestion with ribonuclease T1 and derivation of the complete sequence.
    Mizutani T; Miyazaki M; Takemura S
    J Biochem; 1968 Dec; 64(6):839-48. PubMed ID: 5718549
    [No Abstract]   [Full Text] [Related]  

  • 5. Nucleotide sequence of oligonucleotides derived from Escherichia coli valine transfer RNA by ribonuclease T1 digestion: comparison of the sequences neighboring 3'- and 5'-terminals and anticodon region of Escherichia coli valine transfer RNA with those of yeast valine transfer RNA.
    Harada F; Kimura F; Nishimura S
    Biochim Biophys Acta; 1969 Jun; 182(2):590-2. PubMed ID: 4894023
    [No Abstract]   [Full Text] [Related]  

  • 6. Analyses of large oligonucleotide fragments obtained from a yeast alanine transfer ribonucleic acid by partial digestion with ribonuclease T1.
    Apgar J; Everett GA; Holley RW
    J Biol Chem; 1966 Mar; 241(5):1206-11. PubMed ID: 5933876
    [No Abstract]   [Full Text] [Related]  

  • 7. [Stepwise synthesis of oligonucleotides. VI. The enzymatic synthesis of 5'-O-(alpha-n-butoxyethyl)-dinucleoside monophosphates].
    Zhenodarowa SM; Sedelnikowa EA
    Biochim Biophys Acta; 1969 Nov; 195(1):8-12. PubMed ID: 5361422
    [No Abstract]   [Full Text] [Related]  

  • 8. Nucleotide sequences from yeast serine-acceptor ribonucleic acids.
    Bergquist PL; Robertson JM
    Biochim Biophys Acta; 1965 Aug; 103(4):579-87. PubMed ID: 5859845
    [No Abstract]   [Full Text] [Related]  

  • 9. [The nucleotide composition and oligonucleotides of the pyrimidyl-ribonuclease digest of valine-specific transfer RNA].
    Krutilina AI; Mirzabekov AD; Venkstern TV; Daev AA
    Biokhimiia; 1965; 30(6):1225-35. PubMed ID: 5876259
    [No Abstract]   [Full Text] [Related]  

  • 10. The primary structure of valine-I transfer ribonucleic acid from Torulopsis utilis. I. Complete digestion with pancreatic ribonuclease and ribonuclease T1.
    Takemura S; Mizutani T; Miyazaki M
    J Biochem; 1968 Dec; 64(6):827-37. PubMed ID: 4305011
    [No Abstract]   [Full Text] [Related]  

  • 11. Nucleotide sequence of valine tRNA 1 from Escherichia coli B.
    Harada F; Kimura F; Nishimura S
    Biochim Biophys Acta; 1969 Dec; 195(2):590-2. PubMed ID: 4983708
    [No Abstract]   [Full Text] [Related]  

  • 12. Experimental approaches to the determination of the nucleotide sequences of large oligonucleotides and small nucleic acids.
    Holley RW
    Prog Nucleic Acid Res Mol Biol; 1968; 8():37-47. PubMed ID: 4298706
    [No Abstract]   [Full Text] [Related]  

  • 13. Binding of valine tRNA, fragments to 70-S, 50-S and 30-S ribosomal particles.
    Mirzabekov AD; Grünberger D; Bayev AA
    Biochim Biophys Acta; 1968 Aug; 166(1):68-74. PubMed ID: 4880560
    [No Abstract]   [Full Text] [Related]  

  • 14. [The isolation of valine-specific transfer RNA].
    Grachev MA; Menzorova NI; Sandakhchiev LS; Budovskiĭ EI; Knorre DG
    Biokhimiia; 1966; 31(4):840-9. PubMed ID: 5999968
    [No Abstract]   [Full Text] [Related]  

  • 15. Chemical studies on amino acid acceptor ribonucleic acids. IV. Position of the amino acid residue in aminoacyl srna; chemical approach.
    McLaughlin CS; Ingram VM
    Biochemistry; 1965 Jul; 4(7):1442-7. PubMed ID: 5856643
    [No Abstract]   [Full Text] [Related]  

  • 16. Adenylic acid-specific limited digestion of tRNA with ribonuclease U 2 and the C-C-A terminal repair of resulting fragments.
    Taya Y; Uchida T; Takemura S
    Biochim Biophys Acta; 1972 Dec; 287(3):465-73. PubMed ID: 4565735
    [No Abstract]   [Full Text] [Related]  

  • 17. [Primary structure of valine transfer RNA I of baker's yeast. Nucleotide content and oligonucleotides in ribonuclease hydrolysates].
    Venkstern TV; Li L; Krutilina AI; Mirzabekov AD; Aksel'rod VD; Baev AA
    Dokl Akad Nauk SSSR; 1967 Mar; 173(2):459-62. PubMed ID: 5623092
    [No Abstract]   [Full Text] [Related]  

  • 18. Studies on polynucleotides. LXXIX. Yeast phenylalanine transfer ribonucleic acid: products obtained by degradation with pancreatic ribonuclease.
    RajBhandary UL; Faulkner RD; Stuart A
    J Biol Chem; 1968 Feb; 243(3):575-83. PubMed ID: 5637709
    [No Abstract]   [Full Text] [Related]  

  • 19. Oligonucleotide studies. VI. Large scale fractionation of di- and trinucleotides obtained from pancreatic ribonuclease digests.
    Aoyagi S; Inoue Y
    J Biochem; 1968 Nov; 64(5):603-9. PubMed ID: 5709262
    [No Abstract]   [Full Text] [Related]  

  • 20. Molecular aggregates of ribonucleases. Some enzymatic properties.
    Libonati M
    Ital J Biochem; 1969; 18(6):407-17. PubMed ID: 5380347
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.