These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 5862408)

  • 1. Ubiquinone concentrations in athiorhodaceae grown under various environmental conditions.
    Carr NG; Exell G
    Biochem J; 1965 Sep; 96(3):688-92. PubMed ID: 5862408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HAEMOPROTEINS AND HAEM SYNTHESIS IN FACULTATIVE PHOTOSYNTHETIC AND DENITRIFYING BACTERIA.
    PORRA RJ; LASCELLES J
    Biochem J; 1965 Jan; 94(1):120-6. PubMed ID: 14342218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant of rhodopseudomonas spheroides unable to grow aerobically.
    Wittenberg T; Sistrom WR
    J Bacteriol; 1971 Jun; 106(3):732-8. PubMed ID: 5557591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Glucose-6-phosphate dehydrogenase in autotrophic microorganisms. I. Regulation of the synthesis of glucose-6-phosphate dehydrogenase in Euglena gracilis and Rhodopseudomonas spheroides depending on the culture conditions].
    Ohmann E; Rindt KP; Borriss R
    Z Allg Mikrobiol; 1969; 9(7):557-64. PubMed ID: 5384159
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of the metabolism of carboxylic acids and amino acids by citramalate and other related compounds in Rhodopseudomonas spheroides.
    Yamada T; Kikuchi G
    J Biochem; 1968 Apr; 63(4):462-71. PubMed ID: 5724557
    [No Abstract]   [Full Text] [Related]  

  • 6. [ON THE MORPHOGENESIS OF BACTERIAL "CHROMATOPHORES" (THYLAKOIDS) AND ON THE SYNTHESIS OF BACTERIOCHLOROPHYLL IN RHODOPSEUDOMONAS SPHEROIDES AND RHODOSPIRILLUM RUBRUM].
    DREWS G; GIESBRECHT P
    Zentralbl Bakteriol Orig; 1963 Dec; 190():508-35. PubMed ID: 14166428
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies in carotenogenesis. 23. The nature of the carotenoids in the photosynthetic bacterium Rhodopseudomonas spheroides (athiorhodaceae).
    GOODWIN TW; LAND DG; SISSINS ME
    Biochem J; 1956 Nov; 64(3):486-92. PubMed ID: 13373799
    [No Abstract]   [Full Text] [Related]  

  • 8. The ubiquinone homologue of the green mutant of Rhodopseudomonas spheroides.
    Peters GA; Cellarius RA
    Biochim Biophys Acta; 1972 Feb; 256(2):544-7. PubMed ID: 4536950
    [No Abstract]   [Full Text] [Related]  

  • 9. Changes in the acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions.
    Russell NJ; Harwood JL
    Biochem J; 1979 Aug; 181(2):339-45. PubMed ID: 115463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Base composition of deoxyribonucleic acid isolated from Athiorhodaceae.
    Silver M; Friedman S; Guay R; Couture J; Tanguay R
    J Bacteriol; 1971 Jul; 107(1):368-70. PubMed ID: 5563872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive dehalogenation of halocarboxylic acids by the phototrophic genera Rhodospirillum and Rhodopseudomonas.
    McGrath JE; Harfoot CG
    Appl Environ Microbiol; 1997 Aug; 63(8):3333-5. PubMed ID: 9251226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The influence of oxygen pressure and light intensity on the ATP level of Athiorhodaceae].
    Schön G; Bachofen R
    Arch Mikrobiol; 1970; 73(1):34-46. PubMed ID: 4921935
    [No Abstract]   [Full Text] [Related]  

  • 13. Isolation and counting of Athiorhodaceae with membrane filters.
    Swoager WC; Lindstrom ES
    Appl Microbiol; 1971 Oct; 22(4):683-7. PubMed ID: 4943277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fatty acid composition of whole cells, thylakoids and lipopolysaccharides of Rhodospirillum rubrum and Rhodopseudomonas capsulata].
    Schröder J; Biedermann M; Drews G
    Arch Mikrobiol; 1969; 66(3):273-80. PubMed ID: 5384698
    [No Abstract]   [Full Text] [Related]  

  • 15. Substrate and light dependent fixation of molecular nitrogen in Rhodospirillum rubrum.
    Schick HJ
    Arch Mikrobiol; 1971; 75(2):89-101. PubMed ID: 5540223
    [No Abstract]   [Full Text] [Related]  

  • 16. The lipids and fatty acid metabolism of photosynthetic bacteria.
    Wood BJ; Nichols BW; James AT
    Biochim Biophys Acta; 1965 Oct; 106(2):261-73. PubMed ID: 5867688
    [No Abstract]   [Full Text] [Related]  

  • 17. The spectrum of bacteriochlorophyll in vivo: observations on mutants of Rhodopseudomonas spheroides unable to grow photosynthetically.
    Sistrom WR
    Photochem Photobiol; 1966; 5(11):845-56. PubMed ID: 5979507
    [No Abstract]   [Full Text] [Related]  

  • 18. PHOTOREDUCTION OF UBIQUINONE AND PHOTOOXIDIATION OF PHENAZINE METHOSULFATE BY CHROMATOPHORES OF PHOTOSYNTHETIC BACTERIA AND BACTERIOCHLOROPHYLL.
    ZAUGG WS; VERNON LP; TIRPACK A
    Proc Natl Acad Sci U S A; 1964 Feb; 51(2):232-8. PubMed ID: 14128127
    [No Abstract]   [Full Text] [Related]  

  • 19. Evidence for the photochemical reduction on coenzyme Q in chromatophores of photosynthetic bacteria.
    CLAYTON RK
    Biochem Biophys Res Commun; 1962 Sep; 9():49-53. PubMed ID: 14021651
    [No Abstract]   [Full Text] [Related]  

  • 20. Catalytic properties and regulatory diversity of inorganic pyrophosphatases from photosynthetic bacteria.
    Klemme JH; Klemme B; Gest H
    J Bacteriol; 1971 Dec; 108(3):1122-8. PubMed ID: 4333319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.