BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 5862415)

  • 1. Stimulation of oxidation of mitochondrial fatty acids and of acetate by acetylcarnitine.
    Siliprandi N; Siliprandi D; Ciman M
    Biochem J; 1965 Sep; 96(3):777-80. PubMed ID: 5862415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the transport of acetyl groups from peroxisomes to mitochondria in isolated liver cells oxidizing the polyunsaturated fatty acid 22:4n-6.
    Tran TN; Christophersen BO
    Biochim Biophys Acta; 2001 Oct; 1533(3):255-65. PubMed ID: 11731335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulmonary fatty acid synthesis. I. Mitochondrial acetyl transfer by rat lung in vitro.
    Evans RM; Scholz RW
    Am J Physiol; 1977 Apr; 232(4):E358-63. PubMed ID: 851179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of fatty acid oxidation by acetyl-CoA generated from glucose utilization in isolated myocytes.
    Abdel-aleem S; Nada MA; Sayed-Ahmed M; Hendrickson SC; St Louis J; Walthall HP; Lowe JE
    J Mol Cell Cardiol; 1996 May; 28(5):825-33. PubMed ID: 8762022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dichloroacetate on the metabolism of glucose, pyruvate, acetate, 3-hydroxybutyrate and palmitate in rat diaphragm and heart muscle in vitro and on extraction of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo.
    McAllister A; Allison SP; Randle PJ
    Biochem J; 1973 Aug; 134(4):1067-81. PubMed ID: 4762752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of non-oxidative glucose utilization by L-carnitine in isolated myocytes.
    Abdel-aleem S; Sayed-Ahmed M; Nada MA; Hendrickson SC; St Louis J; Lowe JE
    J Mol Cell Cardiol; 1995 Nov; 27(11):2465-72. PubMed ID: 8596197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 11 -Hydroxylation and carnitine-dependent fatty acid oxidation in adrenal mitochondria.
    Harano Y; Kowal J
    Arch Biochem Biophys; 1972 Nov; 153(1):68-73. PubMed ID: 4650624
    [No Abstract]   [Full Text] [Related]  

  • 8. The metabolism of acetylcarnitine and acetate by bovine and hamster epididymal spermatozoa.
    Bruns KA; Casillas ER
    Biol Reprod; 1989 Aug; 41(2):218-26. PubMed ID: 2804215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deacylation of acetyl-coenzyme A and acetylcarnitine by liver preparations.
    Snoswell AM; Tubbs PK
    Biochem J; 1978 May; 171(2):299-303. PubMed ID: 26333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carnitine-acylcarnitine translocase activity in cardiac mitochondria from aged rats: the effect of acetyl-L-carnitine.
    Paradies G; Ruggiero FM; Petrosillo G; Gadaleta MN; Quagliariello E
    Mech Ageing Dev; 1995 Oct; 84(2):103-12. PubMed ID: 8788238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetate, a major end product of fatty-acid oxidation in hamster brown-adipose-tissue mitochondria.
    Bernson SM; Nicholls DG
    Eur J Biochem; 1974 Sep; 47(3):517-25. PubMed ID: 4434994
    [No Abstract]   [Full Text] [Related]  

  • 12. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide.
    Kerbey AL; Randle PJ; Cooper RH; Whitehouse S; Pask HT; Denton RM
    Biochem J; 1976 Feb; 154(2):327-48. PubMed ID: 180974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters.
    Chase JF; Tubbs PK
    Biochem J; 1972 Aug; 129(1):55-65. PubMed ID: 4646779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of cephaloridine to carnitine transport and fatty acid metabolism in rabbit renal cortical mitochondria: structure-activity relationships.
    Tune BM; Hsu CY
    J Pharmacol Exp Ther; 1994 Sep; 270(3):873-80. PubMed ID: 7932199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformations of carnitine and acetylcarnitine and the relationship to mitochondrial transport of fatty acids.
    Murray WJ; Reed KW; Roche EB
    J Theor Biol; 1980 Feb; 82(4):559-72. PubMed ID: 7382517
    [No Abstract]   [Full Text] [Related]  

  • 16. Reversal of mitochondrial swelling associated with fatty acid oxidation. II. Effects of cytochrome c and carnitine on contraction of fatty acid swollen mitochondria.
    Nakatani M; McMurray WC
    Can J Biochem; 1968 Sep; 46(9):1151-60. PubMed ID: 4301211
    [No Abstract]   [Full Text] [Related]  

  • 17. [Oxidation of fatty acids in the rat renal cortical mitochondria. I].
    Fujita T; Yasuda M; Matsumoto K; Yamamoto K
    Yakugaku Zasshi; 1971 Jul; 91(7):691-4. PubMed ID: 5105470
    [No Abstract]   [Full Text] [Related]  

  • 18. Reduced effects of L-carnitine on glucose and fatty acid metabolism in myocytes isolated from diabetic rats.
    Abdel-aleem S; Karim AM; Zarouk WA; Taylor DA; el-Awady MK; Lowe JE
    Horm Metab Res; 1997 Sep; 29(9):430-5. PubMed ID: 9370110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biosynthetic role for carnitine in the yeast Torulopsis bovina.
    Emaus RK; Bieber LL
    J Biol Chem; 1983 Nov; 258(21):13160-5. PubMed ID: 6685127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oleate oxidation and mitochondrial substrate selection in vascular smooth muscle.
    Allen TJ; Hardin CD
    J Vasc Res; 2001; 38(3):276-87. PubMed ID: 11399900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.