These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 5862415)

  • 1. Stimulation of oxidation of mitochondrial fatty acids and of acetate by acetylcarnitine.
    Siliprandi N; Siliprandi D; Ciman M
    Biochem J; 1965 Sep; 96(3):777-80. PubMed ID: 5862415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the transport of acetyl groups from peroxisomes to mitochondria in isolated liver cells oxidizing the polyunsaturated fatty acid 22:4n-6.
    Tran TN; Christophersen BO
    Biochim Biophys Acta; 2001 Oct; 1533(3):255-65. PubMed ID: 11731335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulmonary fatty acid synthesis. I. Mitochondrial acetyl transfer by rat lung in vitro.
    Evans RM; Scholz RW
    Am J Physiol; 1977 Apr; 232(4):E358-63. PubMed ID: 851179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of fatty acid oxidation by acetyl-CoA generated from glucose utilization in isolated myocytes.
    Abdel-aleem S; Nada MA; Sayed-Ahmed M; Hendrickson SC; St Louis J; Walthall HP; Lowe JE
    J Mol Cell Cardiol; 1996 May; 28(5):825-33. PubMed ID: 8762022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dichloroacetate on the metabolism of glucose, pyruvate, acetate, 3-hydroxybutyrate and palmitate in rat diaphragm and heart muscle in vitro and on extraction of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo.
    McAllister A; Allison SP; Randle PJ
    Biochem J; 1973 Aug; 134(4):1067-81. PubMed ID: 4762752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of non-oxidative glucose utilization by L-carnitine in isolated myocytes.
    Abdel-aleem S; Sayed-Ahmed M; Nada MA; Hendrickson SC; St Louis J; Lowe JE
    J Mol Cell Cardiol; 1995 Nov; 27(11):2465-72. PubMed ID: 8596197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 11 -Hydroxylation and carnitine-dependent fatty acid oxidation in adrenal mitochondria.
    Harano Y; Kowal J
    Arch Biochem Biophys; 1972 Nov; 153(1):68-73. PubMed ID: 4650624
    [No Abstract]   [Full Text] [Related]  

  • 8. The metabolism of acetylcarnitine and acetate by bovine and hamster epididymal spermatozoa.
    Bruns KA; Casillas ER
    Biol Reprod; 1989 Aug; 41(2):218-26. PubMed ID: 2804215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deacylation of acetyl-coenzyme A and acetylcarnitine by liver preparations.
    Snoswell AM; Tubbs PK
    Biochem J; 1978 May; 171(2):299-303. PubMed ID: 26333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carnitine-acylcarnitine translocase activity in cardiac mitochondria from aged rats: the effect of acetyl-L-carnitine.
    Paradies G; Ruggiero FM; Petrosillo G; Gadaleta MN; Quagliariello E
    Mech Ageing Dev; 1995 Oct; 84(2):103-12. PubMed ID: 8788238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetate, a major end product of fatty-acid oxidation in hamster brown-adipose-tissue mitochondria.
    Bernson SM; Nicholls DG
    Eur J Biochem; 1974 Sep; 47(3):517-25. PubMed ID: 4434994
    [No Abstract]   [Full Text] [Related]  

  • 12. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide.
    Kerbey AL; Randle PJ; Cooper RH; Whitehouse S; Pask HT; Denton RM
    Biochem J; 1976 Feb; 154(2):327-48. PubMed ID: 180974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters.
    Chase JF; Tubbs PK
    Biochem J; 1972 Aug; 129(1):55-65. PubMed ID: 4646779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of cephaloridine to carnitine transport and fatty acid metabolism in rabbit renal cortical mitochondria: structure-activity relationships.
    Tune BM; Hsu CY
    J Pharmacol Exp Ther; 1994 Sep; 270(3):873-80. PubMed ID: 7932199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformations of carnitine and acetylcarnitine and the relationship to mitochondrial transport of fatty acids.
    Murray WJ; Reed KW; Roche EB
    J Theor Biol; 1980 Feb; 82(4):559-72. PubMed ID: 7382517
    [No Abstract]   [Full Text] [Related]  

  • 16. Reversal of mitochondrial swelling associated with fatty acid oxidation. II. Effects of cytochrome c and carnitine on contraction of fatty acid swollen mitochondria.
    Nakatani M; McMurray WC
    Can J Biochem; 1968 Sep; 46(9):1151-60. PubMed ID: 4301211
    [No Abstract]   [Full Text] [Related]  

  • 17. [Oxidation of fatty acids in the rat renal cortical mitochondria. I].
    Fujita T; Yasuda M; Matsumoto K; Yamamoto K
    Yakugaku Zasshi; 1971 Jul; 91(7):691-4. PubMed ID: 5105470
    [No Abstract]   [Full Text] [Related]  

  • 18. Reduced effects of L-carnitine on glucose and fatty acid metabolism in myocytes isolated from diabetic rats.
    Abdel-aleem S; Karim AM; Zarouk WA; Taylor DA; el-Awady MK; Lowe JE
    Horm Metab Res; 1997 Sep; 29(9):430-5. PubMed ID: 9370110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biosynthetic role for carnitine in the yeast Torulopsis bovina.
    Emaus RK; Bieber LL
    J Biol Chem; 1983 Nov; 258(21):13160-5. PubMed ID: 6685127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oleate oxidation and mitochondrial substrate selection in vascular smooth muscle.
    Allen TJ; Hardin CD
    J Vasc Res; 2001; 38(3):276-87. PubMed ID: 11399900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.