These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 5863046)

  • 41. Electrolyte distribution in mammalian central nervous system. Are glia high sodium cells?
    KATZMAN R
    Neurology; 1961 Jan; 11():27-36. PubMed ID: 13751841
    [No Abstract]   [Full Text] [Related]  

  • 42. Exchange of sodium in the isolated brain of the frog.
    Chiarandini DJ; Zadunaisky JA
    Exp Neurol; 1966 Jul; 15(3):319-28. PubMed ID: 5947926
    [No Abstract]   [Full Text] [Related]  

  • 43. [Ionic conditions in the cerebral tissue of chick embryos].
    Sedlácek J; Stastný F
    Sb Lek; 1972 Apr; 74(4):136-43. PubMed ID: 5023815
    [No Abstract]   [Full Text] [Related]  

  • 44. Direct effects of carbachol on membrane potential and ion activities in leech glial cells.
    Ballanyi K; Schlue WR
    Glia; 1988; 1(2):165-7. PubMed ID: 2976036
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Brain volume regulation during development: the role of blood-brain barrier potassium transport.
    Keep RF; Xiang J; Ennis SR; Beer ME; Betz AL
    Adv Exp Med Biol; 1993; 331():65-9. PubMed ID: 8333348
    [No Abstract]   [Full Text] [Related]  

  • 46. Effect of ouabain and potassium on ion concentrations in the choroidal epithelium.
    Smith QR; Johanson CE
    Am J Physiol; 1980 May; 238(5):F399-406. PubMed ID: 6246814
    [No Abstract]   [Full Text] [Related]  

  • 47. Localization of tissue sodium and potassium compartments in rabbit renal cortex.
    Burg MB; Abramow M
    Am J Physiol; 1966 Oct; 211(4):1011-7. PubMed ID: 4288770
    [No Abstract]   [Full Text] [Related]  

  • 48. Glutamate accumulation by a clone of glial cells.
    Faivre-Bauman A; Rossier J; Benda P
    Brain Res; 1974 Aug; 76(2):371-5. PubMed ID: 4844462
    [No Abstract]   [Full Text] [Related]  

  • 49. Electrogenic sodium pump in nerve and muscle cells.
    Thomas RC
    Physiol Rev; 1972 Jul; 52(3):563-94. PubMed ID: 4555514
    [No Abstract]   [Full Text] [Related]  

  • 50. Glial ionic excitability: The role for sodium.
    Rose CR; Verkhratsky A
    Glia; 2016 Oct; 64(10):1609-10. PubMed ID: 27509366
    [No Abstract]   [Full Text] [Related]  

  • 51. Intracellular chloride activity in glial cells of the leech central nervous system.
    Ballanyi K; Schlue WR
    J Physiol; 1990 Jan; 420():325-36. PubMed ID: 2324988
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Changes of membrane potential of different types of cell in nerve tissue culture in relation to the ionic composition of the medium. I. Effect of potassium ions on membrane potential. Intracellular concentration of potassium ions].
    Zhukovskaia NM; Chaĭlakhian LM
    Tsitologiia; 1970 Oct; 12(10):1248-54. PubMed ID: 5513512
    [No Abstract]   [Full Text] [Related]  

  • 53. Physiological properties of glial cells in the central nervous system of amphibia.
    Kuffler SW; Nicholls JG; Orkand RK
    J Neurophysiol; 1966 Jul; 29(4):768-87. PubMed ID: 5966434
    [No Abstract]   [Full Text] [Related]  

  • 54. Sodium-potassium adenosine triphosphatase activity in N-nitrosomethylurea-induced rat astrocytoma cells.
    Embree LJ; Hess HH; Shein HM
    Exp Neurol; 1971 Jun; 31(3):383-90. PubMed ID: 4254913
    [No Abstract]   [Full Text] [Related]  

  • 55. Electrogenesis of sustained potentials.
    Somjen GG
    Prog Neurobiol; 1973; 1(3):201-37. PubMed ID: 4591394
    [No Abstract]   [Full Text] [Related]  

  • 56. Functional role of the sodium-bicarbonate cotransport of glial cells in the leech central nervous system.
    Deitmer JW; Schlue WR
    Acta Physiol Scand Suppl; 1989; 582():31. PubMed ID: 2816433
    [No Abstract]   [Full Text] [Related]  

  • 57. The effect of HCO-3 on the swelling and ion uptake of monkey cerebral cortex under conditions of raised extracellular potassium.
    Bourke RS; Kimelberg HG
    J Neurochem; 1975 Sep; 25(3):323-8. PubMed ID: 240001
    [No Abstract]   [Full Text] [Related]  

  • 58. Effect of extracellular K+ on the intracellular free Ca2+ concentration in leech glial cells and Retzius neurones.
    Hochstrate P; Piel C; Schlue WR
    Brain Res; 1995 Oct; 696(1-2):231-41. PubMed ID: 8574674
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glial membrane potentials and their relationship to [K+]o in man and guinea pig. A comparative study of intracellularly marked normal, reactive, and neoplastic glia.
    Picker S; Pieper CF; Goldring S
    J Neurosurg; 1981 Sep; 55(3):347-63. PubMed ID: 6267226
    [No Abstract]   [Full Text] [Related]  

  • 60. Biochemical properties of brain capillaries.
    Eisenberg HM; Suddith RL
    Surg Forum; 1977; 28():469-71. PubMed ID: 153001
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.