These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 5864031)

  • 41. Electron paramagnetic resonance studies on photosynthetic bacteria. I. Properties of photo-induced EPR-signals of Chromatium D.
    Schleyer H
    Biochim Biophys Acta; 1968 Feb; 153(2):427-47. PubMed ID: 4296026
    [No Abstract]   [Full Text] [Related]  

  • 42. The reaction between primary and secondary electron acceptors in bacterial photosynthesis.
    Parson WW
    Biochim Biophys Acta; 1969; 189(3):384-96. PubMed ID: 5363976
    [No Abstract]   [Full Text] [Related]  

  • 43. STUDIES ON LIGHT-INDUCED INHIBITION OF RESPIRATION IN PURPLE BACTERIA: ACTION SPECTRA FOR RHODOSPIRILLUM RUBRUM AND RHODOPSEUDOMONAS SPHEROIDES.
    FORK DC; GOEDHEER JC
    Biochim Biophys Acta; 1964 Mar; 79():249-56. PubMed ID: 14163510
    [No Abstract]   [Full Text] [Related]  

  • 44. STUDIES ON THE ELECTRON-TRANSFER SYSTEMS IN PHOTOSYNTHETIC BACTERIA. IV. KINETICS OF LIGHT-INDUCED CYTOCHROME REACTIONS AND ANALYSIS OF ELECTRON-TRANSFER PATHS.
    NISHIMURA M; ROY SB; SCHLEYER H; CHANCE B
    Biochim Biophys Acta; 1964 Sep; 88():251-66. PubMed ID: 14249834
    [No Abstract]   [Full Text] [Related]  

  • 45. On ultrastructures in Rhodopseudomonas gelatinosa and Rhodospirillum tenue.
    de Boer WE
    Antonie Van Leeuwenhoek; 1969; 35(2):241-2. PubMed ID: 5310456
    [No Abstract]   [Full Text] [Related]  

  • 46. Cytochrome C553 and bacteriochlorophyll interaction at 77 K in chromatophores and a subchromatophore preparation from Chromatium D.
    Dutton PL; Kihara T; McCray JA; Thornber JP
    Biochim Biophys Acta; 1971 Jan; 226(1):81-7. PubMed ID: 5549986
    [No Abstract]   [Full Text] [Related]  

  • 47. Cytochrome photooxidations in Chromatiumchromatophores. Each P870 oxidizes two cytochrome C422 hemes.
    Parson WW
    Biochim Biophys Acta; 1969; 189(3):397-403. PubMed ID: 5363977
    [No Abstract]   [Full Text] [Related]  

  • 48. THE REVERSIBLE INTERACTION OF SODIUM DODECYL SULFATE WITH BACTERIAL CHROMATOPHORES.
    NEWTON JW
    J Biol Chem; 1964 May; 239():1585-8. PubMed ID: 14189898
    [No Abstract]   [Full Text] [Related]  

  • 49. Protein composition of intact and fractionated membranes isolated from dark and light grown cells of a blue green mutant of Rhodospirillum rubrum (BG 1 ).
    Kerber NL; GarcĂ­a AF; Vernon LP; Raveed D
    Biochim Biophys Acta; 1972 Jan; 256(1):108-19. PubMed ID: 4621613
    [No Abstract]   [Full Text] [Related]  

  • 50. Kinetics of the fluorescence change and P8 70 bleaching in chromatophores from Rhodospirillum rubrum.
    Malkin S; Silberstein B
    Biochim Biophys Acta; 1972 Sep; 275(3):369-82. PubMed ID: 4627084
    [No Abstract]   [Full Text] [Related]  

  • 51. The permeability of Rhodospirillum rubrum chromatophores to thiocyanate and perchlorate as detected by light-induced fluorochrome fluorescence changes and by photophosphorylation.
    Gromet-Elhanan Z
    Biochim Biophys Acta; 1972 Jul; 275(1):125-9. PubMed ID: 4340267
    [No Abstract]   [Full Text] [Related]  

  • 52. [Chromatophores of photosynthetic bacteria].
    Ishimoto M; Yamashita J
    Tanpakushitsu Kakusan Koso; 1971 Aug; 16(9):822-30. PubMed ID: 4936494
    [No Abstract]   [Full Text] [Related]  

  • 53. Primary processes in photosynthesis: in situ ESR studies on the light induced oxidized and triplet state of reaction center bacteriochlorophyll.
    Dutton PL; Leight JS; Seibert M
    Biochem Biophys Res Commun; 1972 Jan; 46(2):406-13. PubMed ID: 4333414
    [No Abstract]   [Full Text] [Related]  

  • 54. Energy transfer in bacterial photosynthesis. I. Light intensity dependences of fluorescence lifetimes.
    Borisov AY; Godik VI
    J Bioenerg; 1972 Jun; 3(3):211-20. PubMed ID: 4538075
    [No Abstract]   [Full Text] [Related]  

  • 55. Light-induced electron transport in Chromatium strain D. II. Light-induced absorbance changes in Chromatium chromatophores.
    Cusanovich MA; Bartsch RG; Kamen MD
    Biochim Biophys Acta; 1968 Feb; 153(2):397-417. PubMed ID: 4296025
    [No Abstract]   [Full Text] [Related]  

  • 56. Some effects of o-phenanthroline on electron transport in chromatophores from photosynthetic bacteria.
    Jackson JB; Cogdell RJ; Crofts AR
    Biochim Biophys Acta; 1973 Jan; 292(1):218-25. PubMed ID: 4705131
    [No Abstract]   [Full Text] [Related]  

  • 57. Delayed fluorescence from bacteriochlorophyll in Chromatium vinosum chromatophores.
    Arata H; Takamiya K; Nishimura M
    Biochim Biophys Acta; 1977 Jan; 459(1):36-46. PubMed ID: 12813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Studies on bacterial chromatophores. II. Energy transfer and photooxidative bleaching of bacteriochlorophyll in relation to structure in normal and carotenoid-depleted Chromatium.
    BRIL C
    Biochim Biophys Acta; 1963 Jan; 66():50-60. PubMed ID: 14015480
    [No Abstract]   [Full Text] [Related]  

  • 59. Redox properties of the "P-836" pigment complex of Chromatium.
    Schmidt GL; Kamen MD
    Biochim Biophys Acta; 1971 Apr; 234(1):70-2. PubMed ID: 5560363
    [No Abstract]   [Full Text] [Related]  

  • 60. Reaction center bacteriochlorophyll triplet states: redox potential dependence and kinetics.
    Leigh JS; Dutton PL
    Biochim Biophys Acta; 1974 Jul; 357(1):67-77. PubMed ID: 4370313
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.