These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 5865115)

  • 1. Acceleration of sulfhydryl oxidations by selenocystine.
    Caldwell KA; Tappel AL
    Arch Biochem Biophys; 1965 Oct; 112(1):196-200. PubMed ID: 5865115
    [No Abstract]   [Full Text] [Related]  

  • 2. Reduction of selenocystine by cysteine or glutathione.
    Dickson RC; Tappel AL
    Arch Biochem Biophys; 1969 Mar; 130(1):547-50. PubMed ID: 5778666
    [No Abstract]   [Full Text] [Related]  

  • 3. Generation of reactive oxygen species from the reaction of selenium compounds with thiols and mammary tumor cells.
    Yan L; Spallholz JE
    Biochem Pharmacol; 1993 Jan; 45(2):429-37. PubMed ID: 8382065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury, silver, and gold inhibition of selenium-accelerated cysteine oxidation.
    Dillard CJ; Tappel AL
    J Inorg Biochem; 1986 Sep; 28(1):13-20. PubMed ID: 3760861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of cyst(e)ine on the auto-oxidation of homocysteine.
    Hogg N
    Free Radic Biol Med; 1999 Jul; 27(1-2):28-33. PubMed ID: 10443916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental sulfur K-edge X-ray absorption spectroscopic study of cysteine, cystine, homocysteine, penicillamine, methionine and methionine sulfoxide.
    Risberg ED; Jalilehvand F; Leung BO; Pettersson LG; Sandström M
    Dalton Trans; 2009 May; (18):3542-58. PubMed ID: 19381417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of selenocystine and selenomethionine on activation ofulfhydryl enzymes.
    Dickson RC; Tappel AL
    Arch Biochem Biophys; 1969 Apr; 131(1):100-10. PubMed ID: 4976490
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs.
    Huber RE; Criddle RS
    Arch Biochem Biophys; 1967 Oct; 122(1):164-73. PubMed ID: 6076213
    [No Abstract]   [Full Text] [Related]  

  • 9. OXIDATION OF STEROIDAL KETONES. II. SELENIUM DIOXIDE CATALYZED HYDROGEN PEROXIDE OXIDATION OF 4-EN-3-ONES.
    CASPI E; BALASUBRAHMANYAM SN
    Experientia; 1963 Aug; 19():396-7. PubMed ID: 14084048
    [No Abstract]   [Full Text] [Related]  

  • 10. Phosphorylase and creatine kinase modification by thiol-disulfide exchange and by xanthine oxidase-initiated S-thiolation.
    Miller RM; Sies H; Park EM; Thomas JA
    Arch Biochem Biophys; 1990 Feb; 276(2):355-63. PubMed ID: 2106288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms involved in the protective effect of selenocystine against methylmercury-induced cell death in human HepG2 cells.
    Cordero-Herrera I; Cuello S; Goya L; Madrid Y; Bravo L; Cámara C; Ramos S
    Food Chem Toxicol; 2013 Sep; 59():554-63. PubMed ID: 23838314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selenium deficiency in Fisher-344 rats decreases plasma and tissue homocysteine concentrations and alters plasma homocysteine and cysteine redox status.
    Uthus EO; Yokoi K; Davis CD
    J Nutr; 2002 Jun; 132(6):1122-8. PubMed ID: 12042420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyanylation of sulfhydryl groups by 2-nitro-5-thiocyanobenzoic acid. High-yield modification and cleavage of peptides at cysteine residues.
    Degani Y; Patchornik A
    Biochemistry; 1974 Jan; 13(1):1-11. PubMed ID: 4808702
    [No Abstract]   [Full Text] [Related]  

  • 14. Ascorbate is particularly effective against LDL oxidation in the presence of iron(III) and homocysteine/cystine at acidic pH.
    Pfanzagl B
    Biochim Biophys Acta; 2005 Oct; 1736(3):237-43. PubMed ID: 16169276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OXIDATION OF CYSTINE BY HYDROGEN PEROXIDE CATALYSED BY HORSE-RADISH PEROXIDASE.
    STELMASZYNSKA T; ZGLICZYNSKI JM
    Acta Biochim Pol; 1963; 10():371-8. PubMed ID: 14073950
    [No Abstract]   [Full Text] [Related]  

  • 16. Redox regulation of homocysteine-dependent glutathione synthesis.
    Vitvitsky V; Mosharov E; Tritt M; Ataullakhanov F; Banerjee R
    Redox Rep; 2003; 8(1):57-63. PubMed ID: 12631446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of L-[14C]cystine and L-[14C]cysteine by subtypes of high affinity glutamate transporters over-expressed in HEK cells.
    Hayes D; Wiessner M; Rauen T; McBean GJ
    Neurochem Int; 2005 Jun; 46(8):585-94. PubMed ID: 15863236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic action of selenium in the reduction of methemoglobin by glutathione.
    Masukawa T; Iwata H
    Life Sci; 1977 Sep; 21(5):695-700. PubMed ID: 904442
    [No Abstract]   [Full Text] [Related]  

  • 19. SPECTROPHOTOMETRIC DETERMINATION OF DISULFIDES, SULFINIC ACIDS, THIO ETHERS, AND THIOLS WITH THE PALLADIUM (II) ION.
    AKERFELDT S; LOEVGREN G
    Anal Biochem; 1964 Jun; 8():223-8. PubMed ID: 14186678
    [No Abstract]   [Full Text] [Related]  

  • 20. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control.
    Jones DP; Go YM; Anderson CL; Ziegler TR; Kinkade JM; Kirlin WG
    FASEB J; 2004 Aug; 18(11):1246-8. PubMed ID: 15180957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.