BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 5866038)

  • 1. Sampling submicron T1 bacteriophage aerosols.
    Harstad JB
    Appl Microbiol; 1965 Nov; 13(6):899-908. PubMed ID: 5866038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of air ions on submicron t1 bacteriophage aerosols.
    Happ JW; Harstad JB; Buchanan LM
    Appl Microbiol; 1966 Nov; 14(6):888-91. PubMed ID: 16349691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced recovery of airborne T3 coliphage and Pasteurella pestis bacteriophage by means of a presampling humidification technique.
    Hatch MT; Warren JC
    Appl Microbiol; 1969 May; 17(5):685-9. PubMed ID: 4891719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of some factors in the mechanism of inactivation of bacteriophage MS2 in aerosols.
    Trouwborst T; de Jong JC
    Appl Microbiol; 1973 Sep; 26(3):252-7. PubMed ID: 4584573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the inactivation of the bacteriophage T 1 in aerosols.
    Trouwborst T; de Jong JC
    Appl Microbiol; 1972 May; 23(5):938-41. PubMed ID: 4555637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined scanning electron microscopy and image analysis to investigate airborne submicron particles: a comparison between personal samplers.
    Zamengo L; Barbiero N; Gregio M; Orrù G
    Chemosphere; 2009 Jul; 76(3):313-23. PubMed ID: 19398120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of Particle Size and Viability of SARS-CoV-2 Aerosols from a Range of Nebuliser Types Using a Novel Sampling Technique.
    Paton S; Clark S; Spencer A; Garratt I; Dinesh I; Thompson KA; Bennett A; Pottage T
    Viruses; 2022 Mar; 14(3):. PubMed ID: 35337046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogenous bacterial aerosols produced with a spinning-disc generator.
    Harstad JB; Filler ME; Hushen WT; Decker HM
    Appl Microbiol; 1970 Jul; 20(1):94-7. PubMed ID: 4989672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory production of ammonium and ferric sulfate aerosols.
    Ho AT; Phalen RF; Crocker TT
    Am Ind Hyg Assoc J; 1980 May; 41(5):346-51. PubMed ID: 7415961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temperature and relative humidity on the stability of infectious porcine reproductive and respiratory syndrome virus in aerosols.
    Hermann J; Hoff S; Muñoz-Zanzi C; Yoon KJ; Roof M; Burkhardt A; Zimmerman J
    Vet Res; 2007; 38(1):81-93. PubMed ID: 17156739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the collection efficiency of the liquid impinger for ultrafine particles and viral aerosols by applying granular bed filtration.
    Yu KP; Chen YP; Gong JY; Chen YC; Cheng CC
    J Aerosol Sci; 2016 Nov; 101():133-143. PubMed ID: 32287369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of bioaerosol samplers for the detection and quantification of influenza virus from artificial aerosols and influenza virus-infected ferrets.
    Bekking C; Yip L; Groulx N; Doggett N; Finn M; Mubareka S
    Influenza Other Respir Viruses; 2019 Nov; 13(6):564-573. PubMed ID: 31541519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Evaluation of the protective performance of a positive pressure bio-protective clothing against viral aerosol].
    Li N; Wen ZB; Yang WH; Wang J; Li JS; Hu LF; Dong XK; Liu KY; Cao J
    Zhonghua Yu Fang Yi Xue Za Zhi; 2012 Jan; 46(1):67-9. PubMed ID: 22490144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerosol penetration properties of an electret filter with submicron aerosols with various operating factors.
    Yang S; Lee WM; Huang HL; Huang YC; Luo CH; Wu CC; Yu KP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jan; 42(1):51-7. PubMed ID: 17129948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EFFECTS OF ENVIRONMENTAL FACTORS ON THE SURVIVAL OF AIRBORNE T-3 COLIPHAGE.
    EHRLICH R; MILLER S; IDOINE LS
    Appl Microbiol; 1964 Nov; 12(6):479-82. PubMed ID: 14239578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filter and electrostatic samplers for semivolatile aerosols: physical artifacts.
    Volckens J; Leith D
    Environ Sci Technol; 2002 Nov; 36(21):4613-7. PubMed ID: 12433172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influences of external vs. core-shell mixing on aerosol optical properties at various relative humidities.
    Ramachandran S; Srivastava R
    Environ Sci Process Impacts; 2013 May; 15(5):1070-7. PubMed ID: 23563501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of bacteriophage T3 in aerosols: effect of prehumidification on survival after spraying from solutions of salt, peptone, and saliva.
    Trouwborst T; Kuyper S
    Appl Microbiol; 1974 May; 27(5):834-7. PubMed ID: 4598220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.