These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 5867548)

  • 1. Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro.
    Crane RK; Forstner G; Eichholz A
    Biochim Biophys Acta; 1965 Nov; 109(2):467-77. PubMed ID: 5867548
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on transmural potentials in vitro in relation to intestinal absorption. I. Apparent Michaelis constants for Na+dependent sugar transport.
    Lyon I; Crane RK
    Biochim Biophys Acta; 1966 Feb; 112(2):278-91. PubMed ID: 5942958
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of lithium on intestinal sugar transport.
    Bihler I; Adamic S
    Biochim Biophys Acta; 1967 Jul; 135(3):466-74. PubMed ID: 6048817
    [No Abstract]   [Full Text] [Related]  

  • 4. Intestinal sugar transport: ionic activation and chemical specificity.
    Bihler I
    Biochim Biophys Acta; 1969 Jun; 183(1):169-81. PubMed ID: 5792864
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on the mechanism of intestinal absorption of sugars. IX. Intracellular sodium concentrations and active sugar transport by hamster small intestine in vitro.
    Bosacková J; Crane RK
    Biochim Biophys Acta; 1965 Jul; 102(2):436-41. PubMed ID: 5852099
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on transmural potentials in vitro in relation to intestinal absorption. IV. Phlorizin-sugar interactions in rat gut.
    Lyon I
    Biochim Biophys Acta; 1967 Jul; 135(3):496-506. PubMed ID: 6048819
    [No Abstract]   [Full Text] [Related]  

  • 7. Sodium and sugar fluxes across the mucosal border of rabbit ileum.
    Goldner AM; Schultz SG; Curran PF
    J Gen Physiol; 1969 Mar; 53(3):362-83. PubMed ID: 5767337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dimethylsulfoxide on the intestinal sugar transport.
    Csáky TZ; Ho PM
    Proc Soc Exp Biol Med; 1966 Jul; 122(3):860-5. PubMed ID: 5918964
    [No Abstract]   [Full Text] [Related]  

  • 9. Structural requirements for active intestinal sugar transport. The involvement of hydrogen bonds at C-1 and C-6 of the sugar.
    Barnett JE; Jarvis WT; Munday KA
    Biochem J; 1968 Aug; 109(1):61-7. PubMed ID: 5669849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the mechanism of intestinal absorption of sugars. 8. Cation inhibition of active sugar transport and 22Na influx into hamster small intestine, in vitro.
    Bosacková J; Crane RK
    Biochim Biophys Acta; 1965 Jul; 102(2):423-35. PubMed ID: 5852098
    [No Abstract]   [Full Text] [Related]  

  • 11. Structural requirements for active intestinal transport. Spatial and bonding requirements at C-3 of the sugar.
    Barnett JE; Ralph A; Munday KA
    Biochem J; 1969 Sep; 114(3):569-73. PubMed ID: 5820643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of energy metabolism in the interaction between amino acid and sugar transport in the small intestine.
    Bihler I; Sawh PC
    Can J Physiol Pharmacol; 1973 May; 51(5):378-82. PubMed ID: 4746705
    [No Abstract]   [Full Text] [Related]  

  • 13. Absorption of sodium, chloride, water, and simple sugars in rat small intestine.
    Levinson RA; Schedl HP
    Am J Physiol; 1966 Oct; 211(4):939-42. PubMed ID: 5926581
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of sodium, mannitol, and magnesium on glucose, galactose, 3-O-methylglucose, and fructose absorption in the human ileum.
    Bieberdorf FA; Morawski S; Fordtran JS
    Gastroenterology; 1975 Jan; 68(1):58-66. PubMed ID: 1116666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of intestinal sugar transport by phenolphthalein.
    Adamic S; Bihler I
    Mol Pharmacol; 1967 Mar; 3(2):188-94. PubMed ID: 6040598
    [No Abstract]   [Full Text] [Related]  

  • 16. Intestinal transport of 3-O-methyl-D-glucose in the normal and alloxan-diabetic rat.
    Flores P; Schedl HP
    Am J Physiol; 1968 Apr; 214(4):725-9. PubMed ID: 5642932
    [No Abstract]   [Full Text] [Related]  

  • 17. Inclusion of L-glucose within the specificity limits of the active sugar transport system of hamster small intestine.
    Caspary WF; Crane RK
    Biochim Biophys Acta; 1968 Nov; 163(3):395-400. PubMed ID: 5721901
    [No Abstract]   [Full Text] [Related]  

  • 18. Spatial relationship between intestinal disaccharidases and the active transport system for sugars.
    Malathi P; Crane RK
    Biochim Biophys Acta; 1968 Sep; 163(2):275-7. PubMed ID: 5686284
    [No Abstract]   [Full Text] [Related]  

  • 19. The relationship between Na+ and the active transport of arbutin in the small intestine.
    Alvarado F
    Biochim Biophys Acta; 1965 Nov; 109(2):478-94. PubMed ID: 5893798
    [No Abstract]   [Full Text] [Related]  

  • 20. Induction of an intestinal epithelial sugar transport system by high blood sugar.
    Csáky TZ; Fischer E
    Experientia; 1977 Feb; 33(2):223-4. PubMed ID: 844565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.