These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 5871819)

  • 1. Isolation of threonyl adenylate-enzyme complex.
    Allende JE; Allende CC; Gatica M; Matamala M
    Biochem Biophys Res Commun; 1964 Jul; 16(4):342-6. PubMed ID: 5871819
    [No Abstract]   [Full Text] [Related]  

  • 2. The aminoacyl ribonucleic acid synthetases. I. Properties of the threonyladenylate-enzyme complex.
    Allende CC; Allende JE; Gatica M; Celis J; Mora G; Matamala M
    J Biol Chem; 1966 May; 241(10):2245-51. PubMed ID: 5911611
    [No Abstract]   [Full Text] [Related]  

  • 3. Transfer ribonucleic acid-induced hydrolysis of valyladenylate bound to isoleucyl ribonucleic acid synthetase.
    Baldwin AN; Berg P
    J Biol Chem; 1966 Feb; 241(4):839-45. PubMed ID: 5324173
    [No Abstract]   [Full Text] [Related]  

  • 4. Properties and substrate specificity of the leucyl-, the threonyl- and the valyl-transfer-ribonucleic acid synthetases from Aesculus species.
    Anderson JW; Fowden L
    Biochem J; 1970 Oct; 119(4):691-7. PubMed ID: 5493505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the absence of the terminal adenine nucleotide at the amino acid-acceptor end of transfer ribonucleic acid in non-lactating bovine mammary gland and its inhibitory effect on the aminoacylation of rat liver transfer ribonucleic acid.
    Herrington MD; Hawtrey AO
    Biochem J; 1970 Feb; 116(3):405-14. PubMed ID: 5435687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species specificity of a tyrosyl transfer ribonucleic acid synthetase from calf liver.
    Pearlman RE; Bloch K
    Biochemistry; 1967 Jun; 6(6):1712-5. PubMed ID: 6035913
    [No Abstract]   [Full Text] [Related]  

  • 7. Observation on the interaction of a valyl-adenylate-synthetase complex with its transfer ribonucleic acid and the implication thereof.
    Williams JO
    J Bacteriol; 1969 Jan; 97(1):460-1. PubMed ID: 5764343
    [No Abstract]   [Full Text] [Related]  

  • 8. [A preparative procedure for the isolation of enriched preparations of aminoacyl-tRNA-synthetases from baker's yeast].
    Ovander MN; Sandakhchiev LS
    Biokhimiia; 1966; 31(6):1121-6. PubMed ID: 5999843
    [No Abstract]   [Full Text] [Related]  

  • 9. Action of venom phosphodiesterase on transfer RNA from Escherichia coli.
    Miller JP; Hirst-Bruns ME; Philipps GR
    Biochim Biophys Acta; 1970 Sep; 217(1):176-88. PubMed ID: 4323577
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence of a codon restriction hypothesis of cellular differentiation: multiplicity of mammalian leucyl-sRNA-specific synthetases and tissue-specific deficiency in an alanyl-sRNA synthetase.
    Strehler BL; Hendley DD; Hirsch GP
    Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1751-8. PubMed ID: 5231409
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of pH on the stability of several aminoacyl-sRNA's.
    Gatica M; Allende CC; Mora G; Allende JE; Medina J
    Biochim Biophys Acta; 1966 Oct; 129(1):201-3. PubMed ID: 5970069
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies on nucleic acids of living fossils. II. Transfer RNA from the brachiopod lingula.
    Shimizu N; Miura KI
    Biochim Biophys Acta; 1971 Mar; 232(2):278-88. PubMed ID: 4928710
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of transfer ribonucleic acids and aminoacyl synthetases of liver and ascites tumor cells.
    Goldman M; Johnston WM; Griffin AC
    Cancer Res; 1969 May; 29(5):1051-5. PubMed ID: 5781097
    [No Abstract]   [Full Text] [Related]  

  • 14. Mitochondrial-specific aminoacyl-RNA synthetases.
    Barnett WE; Brown DH; Epler JL
    Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1775-81. PubMed ID: 5231411
    [No Abstract]   [Full Text] [Related]  

  • 15. Selective recognition of the native conformation of transfer ribonucleic acids by enzymes.
    Lindahl T; Adams A; Geroch M; Fresco JR
    Proc Natl Acad Sci U S A; 1967 Jan; 57(1):178-85. PubMed ID: 5233167
    [No Abstract]   [Full Text] [Related]  

  • 16. Fine structural localization of acetyl coenzyme A carboxylase in rat hepatocytes.
    Yates RD; Higgins JA; Barrnett RJ
    J Histochem Cytochem; 1969 Jun; 17(6):379-85. PubMed ID: 4241832
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulatory significance of transfer RNA charging levels. I. Measurements of charging levels in livers of chow-fed rats, fasting rats, and rats fed balanced or imbalanced mixtures of amino acids.
    Allen RE; Raines PL; Regen DM
    Biochim Biophys Acta; 1969 Oct; 190(2):323-36. PubMed ID: 4310865
    [No Abstract]   [Full Text] [Related]  

  • 18. Differences between mitochondrial and cytoplasmic transfer RNA and aminoacyl transfer RNA synthetases from rat liver.
    Buck CA; Nass MM
    Proc Natl Acad Sci U S A; 1968 Jul; 60(3):1045-52. PubMed ID: 5243921
    [No Abstract]   [Full Text] [Related]  

  • 19. Methylation properties of mitochondrion-specific transfer RNA from cultured hamster cells.
    Dubin DT; Friend DA
    Biochim Biophys Acta; 1974 Mar; 340(3):269-77. PubMed ID: 4856973
    [No Abstract]   [Full Text] [Related]  

  • 20. A test for the "degeneracy" of valine-acceptor ribonucleic acid.
    Grachev MA; Budowsky EI; Mirzabekov AD; Krutilina AI; Sandakhchiev LS
    Biochim Biophys Acta; 1965 Nov; 108(3):506-9. PubMed ID: 5867537
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.