These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 5875349)
1. Application of chemical relaxation to biochemical systems. II. Two-step-reactions. Czerlinski G J Theor Biol; 1964 Nov; 7(3):463-84. PubMed ID: 5875349 [No Abstract] [Full Text] [Related]
2. Application of chemical relaxation to biological systems. 3. Selected three-step reactions. Czerlinski G J Theor Biol; 1967 Dec; 17(3):343-82. PubMed ID: 5586517 [No Abstract] [Full Text] [Related]
3. Two types of rate-determining step in chemical and biochemical processes. Yagisawa S Biochem J; 1989 Nov; 263(3):985-8. PubMed ID: 2597141 [TBL] [Abstract][Full Text] [Related]
4. Some remarks on Shear's Liapunov function for systems of chemical reactions. Higgins J J Theor Biol; 1968 Dec; 21(3):293-304. PubMed ID: 5719246 [No Abstract] [Full Text] [Related]
6. Holobiochemistry: the effect of local environment upon the equilibria and rates of biochemical reactions. Minton AP Int J Biochem; 1990; 22(10):1063-7. PubMed ID: 2289612 [No Abstract] [Full Text] [Related]
7. Use of transient and steady- state measurements of the unidirectional flux ratio for the determination of the free energy change of chemical reactions and active transport systems. Patlak CS; Pettigrew KD; Rapoport SI Bull Math Biol; 1980; 42(4):529-37. PubMed ID: 7437577 [No Abstract] [Full Text] [Related]
8. Chemical relaxation of cyclic enzyme systems. V. The Michaelis and Henri schemes. Czerlinski GH J Theor Biol; 1971 Aug; 32(2):373-82. PubMed ID: 5566795 [No Abstract] [Full Text] [Related]
9. Chemical oscillations in closed macromolecular systems. Di Cera E; Phillipson PE; Wyman J Proc Natl Acad Sci U S A; 1988 Aug; 85(16):5923-6. PubMed ID: 3413066 [TBL] [Abstract][Full Text] [Related]
10. Chemical relaxation of cyclic enzyme reactions. II. General kinetic treatment of four-step mechanisms. Czerlinski GH J Theor Biol; 1968 Dec; 21(3):398-407. PubMed ID: 5719252 [No Abstract] [Full Text] [Related]
12. Application of chemical relaxation to biochemical systems. I. Isolated reactions. Czerlinski G J Theor Biol; 1964 Nov; 7(3):435-62. PubMed ID: 5875348 [No Abstract] [Full Text] [Related]
13. Thermodynamics and kinetics of complex formation between cobalt(II), nickel(II), and copper(II) with glycyl-L-leucine and L-leucylglycine. Pasternack RF; Gipp L; Sigel H J Am Chem Soc; 1972 Nov; 94(23):8031-8. PubMed ID: 5079962 [No Abstract] [Full Text] [Related]
14. Limit-cycle oscillations and chaos in reaction networks subject to conservation of mass. Di Cera E; Phillipson PE; Wyman J Proc Natl Acad Sci U S A; 1989 Jan; 86(1):142-6. PubMed ID: 2911564 [TBL] [Abstract][Full Text] [Related]
15. Chemical instabilities and relaxation oscillations. Lavenda B; Nicolis G; Herschkowitz-Kaufman M J Theor Biol; 1971 Aug; 32(2):283-92. PubMed ID: 5566787 [No Abstract] [Full Text] [Related]
16. Chemical relaxation of cyclic enzyme reactions. I. General kinetic treatment of three-step mechanisms. Czerlinski GH J Theor Biol; 1968 Dec; 21(3):387-97. PubMed ID: 5719251 [No Abstract] [Full Text] [Related]
18. Medicinal chemistry by the numbers: the physicochemistry, thermodynamics and kinetics of modern drug design. Smith GF Prog Med Chem; 2009; 48():1-29. PubMed ID: 21544956 [No Abstract] [Full Text] [Related]
19. Quantum dynamics of chemical reactions. Clary DC Science; 2008 Aug; 321(5890):789-91. PubMed ID: 18687951 [No Abstract] [Full Text] [Related]
20. THE IRREVERSIBLE DENATURATION OF BACTERIOPHAGE DEOXYRIBONUCLEIC ACID. SUBIRANA JA Biochim Biophys Acta; 1965 May; 103():13-24. PubMed ID: 14336432 [No Abstract] [Full Text] [Related] [Next] [New Search]