These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 5878122)

  • 21. [Description of the active transport of sodium through isolated frog skin based on the thermodynamics of irreversible processes. 3. Experimental control].
    Marro F; Pesente L; Gainotti M
    Boll Soc Ital Biol Sper; 1964 Dec; 40(23):1447-9. PubMed ID: 5878006
    [No Abstract]   [Full Text] [Related]  

  • 22. [Representation of the active transport of sodium through isolated frog skin based on the thermodynamics of irreversible processes. II. Deduction of a relationship between transcutaneous potential and short-circuit current].
    Marro F; Pesente L
    Boll Soc Ital Biol Sper; 1964 Nov; 40(22):1443-6. PubMed ID: 5876871
    [No Abstract]   [Full Text] [Related]  

  • 23. [Description of the active transport of sodium through isolated frog skin based on the thermodynamics of irreversible processes. IV. Discussion of the significance and practical usefulness].
    Marro F; Pesente L
    Boll Soc Ital Biol Sper; 1964 Dec; 40(23):1449-52. PubMed ID: 5878007
    [No Abstract]   [Full Text] [Related]  

  • 24. Seasonal changes in the sensitivity of frog skin to prostaglandin and the effect of external sodium and chloride on the response.
    Hall WJ
    Ir J Med Sci; 1973 Sep; 142(5):230-43. PubMed ID: 4755427
    [No Abstract]   [Full Text] [Related]  

  • 25. Transepithelial transport of sodium and chloride ions in isolated skin of the frog, Rana esculenta L.
    Kosik-Bogacka DI; Tyrakowski T
    Folia Biol (Krakow); 2002; 50(3-4):107-14. PubMed ID: 12729155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3 H-Oxytocin binding sites in the isolated frog skin epithelium: relation to the physiological response.
    Bockaert J; Imbert M; Jard S; Morel F
    Mol Pharmacol; 1972 Mar; 8(2):230-40. PubMed ID: 4537209
    [No Abstract]   [Full Text] [Related]  

  • 27. Electron microprobe analysis of frog skin epithelium: pathway of transepithelial sodium transport.
    Rick R; Dörge A; Thurau K
    Soc Gen Physiol Ser; 1981; 36():197-208. PubMed ID: 6974404
    [No Abstract]   [Full Text] [Related]  

  • 28. [Analysis of some components of the system of sodium active transport in frog skin].
    Natochin IuV
    Biofizika; 1966; 11(4):626-30. PubMed ID: 6000621
    [No Abstract]   [Full Text] [Related]  

  • 29. Effects of neurohypophyseal hormones on the skin permeability of Rana cancrivora, in vivo.
    Dicker SE; Elliott AB
    J Physiol; 1969 Jul; 203(1):74P-75P. PubMed ID: 5821922
    [No Abstract]   [Full Text] [Related]  

  • 30. Reversed potentials in isolated frog skin. II. Active transport of chloride.
    Martin DW; Curran PF
    J Cell Physiol; 1966 Jun; 67(3):367-73. PubMed ID: 5963062
    [No Abstract]   [Full Text] [Related]  

  • 31. Effect of certain pesticides on active sodium transport in the epithelium of isolated frog skin.
    Pogorzelska H; Knapowski J; Kontek M
    Acta Physiol Pol; 1982; 33(3):189-97. PubMed ID: 6983813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of N-ethylmaleimide, introduced in to the serous fluid, on the active transport of sodium through the skin of Rana esculenta].
    Ardizzone C; Lippe C
    Boll Soc Ital Biol Sper; 1983 Jun; 59(6):844-9. PubMed ID: 6603855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The polarized distribution of Na+, K+-ATPase and active transport across epithelia.
    Cereijido M; Shoshani L; Contreras RG
    J Membr Biol; 2001 Dec; 184(3):299-304. PubMed ID: 11891555
    [No Abstract]   [Full Text] [Related]  

  • 34. [The nature of urea transport across the skin of of Rana esculenta].
    Svelto M; Casavola V; Valenti G; Lippe C
    Boll Soc Ital Biol Sper; 1982 Jun; 58(12):752-5. PubMed ID: 6980654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Preliminary observations on the incorporation of tyrosine-C14 in melanin isolated from the skin and liver of Rana esculenta L].
    Sciuto S; Sichel G; Corsaro C; Sinatra F
    Boll Soc Ital Biol Sper; 1978 Mar; 54(6):503-7. PubMed ID: 311220
    [No Abstract]   [Full Text] [Related]  

  • 36. [Effect of ionizing radiation on the transmembrane transport of sodium ions in the skin of the frog under a functional load].
    Mtskhvetadze AV; Kotariia RZ
    Radiobiologiia; 1981; 21(3):446-50. PubMed ID: 6170085
    [No Abstract]   [Full Text] [Related]  

  • 37. The significance of hypothalamus in the intake of water and NaCl.
    Sterc J
    Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove; 1975; 18(4-5):221-31. PubMed ID: 1070110
    [No Abstract]   [Full Text] [Related]  

  • 38. Survival of Rana pipiens in deionized water.
    McAfee RD; Kalckar HM
    Science; 1972 Oct; 178(4057):183-5. PubMed ID: 4538636
    [No Abstract]   [Full Text] [Related]  

  • 39. [Automatic 10-channel device for determination of active potassium transport in frog skin].
    Ivanov VV; Natochin IuV
    Fiziol Zh SSSR Im I M Sechenova; 1968 Jan; 54(1):122-5. PubMed ID: 5728462
    [No Abstract]   [Full Text] [Related]  

  • 40. Effects of arginine vasotocin and vasopressin receptor antagonists on Na+ and Cl- transport in the isolated skin of two frog species, Hyla japonica and Rana nigromaculata.
    Yamada T; Nishio T; Sano Y; Kawago K; Matsuda K; Uchiyama M
    Gen Comp Endocrinol; 2008 May; 157(1):63-9. PubMed ID: 18448104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.