BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 588531)

  • 1. Variation in the weight, specific gravity and composition of the antlers of red deer (Cervus elaphus L.).
    Hyvärinen H; Kay RN; Hamilton WJ
    Br J Nutr; 1977 Nov; 38(3):301-11. PubMed ID: 588531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does Cu supplementation affect the mechanical and structural properties and mineral content of red deer antler bone tissue?
    Gambín P; Serrano MP; Gallego L; García A; Cappelli J; Ceacero F; Landete-Castillejos T
    Animal; 2017 Aug; 11(8):1312-1320. PubMed ID: 28069103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Body weight, early growth and antler size influence antler bone mineral composition of Iberian red deer (Cervus elaphus hispanicus).
    Landete-Castillejos T; Garcia A; Gallego L
    Bone; 2007 Jan; 40(1):230-5. PubMed ID: 16949898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and mineralisation density of antler and pedicle bone in red deer (Cervus elaphus L.) exposed to different levels of environmental fluoride: a quantitative backscattered electron imaging study.
    Kierdorf U; Kierdorf H; Boyde A
    J Anat; 2000 Jan; 196 ( Pt 1)(Pt 1):71-83. PubMed ID: 10697290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testosterone, but not IGF-1, LH, prolactin or cortisol, may serve as antler-stimulating hormone in red deer stags (Cervus elaphus).
    Bartos L; Schams D; Bubenik GA
    Bone; 2009 Apr; 44(4):691-8. PubMed ID: 19124089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in blood content and histology during growth of antlers in red deer (Cervus elaphus) and their relationship to plasma testosterone levels.
    Muir PD; Sykes AR; Barrell GK
    J Anat; 1988 Jun; 158():31-42. PubMed ID: 3225223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Element concentrations and element ratios in antler and pedicle bone of yearling red deer (Cervus elaphus) stags-a quantitative X-ray fluorescence study.
    Kierdorf U; Stoffels D; Kierdorf H
    Biol Trace Elem Res; 2014 Dec; 162(1-3):124-33. PubMed ID: 25319008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biometrics, testosterone, cortisol and antler growth cycle in Iberian red deer stags (Cervus elaphus hispanicus).
    Gaspar-López E; Landete-Castillejos T; Estevez JA; Ceacero F; Gallego L; García AJ
    Reprod Domest Anim; 2010 Apr; 45(2):243-9. PubMed ID: 18992114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsatile growth hormone, insulin-like growth factors and antler development in red deer (Cervus elaphus scoticus) stags.
    Suttie JM; Fennessy PF; Corson ID; Laas FJ; Crosbie SF; Butler JH; Gluckman PD
    J Endocrinol; 1989 May; 121(2):351-60. PubMed ID: 2754367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocrine control of antler growth in red deer stags.
    Suttie JM; Lincoln GA; Kay RN
    J Reprod Fertil; 1984 May; 71(1):7-15. PubMed ID: 6374134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of melatonin implants on reproductive seasonality of male red deer (Cervus elaphus).
    Webster JR; Suttie JM; Corson ID
    J Reprod Fertil; 1991 May; 92(1):1-11. PubMed ID: 2056480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of testosterone on pedicle formation and its transformation to antler in castrated male, freemartin and normal female red deer (Cervus elaphus).
    Li C; Littlejohn RP; Corson ID; Suttie JM
    Gen Comp Endocrinol; 2003 Mar; 131(1):21-31. PubMed ID: 12620243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of cyproterone acetate on the antler cycle in red deer (Cervus elaphus L.).
    Jaczewski Z; Gizejewski Z; Bartecki R
    Reprod Biol; 2004 Jul; 4(2):165-76. PubMed ID: 15297890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Winter food restriction and summer compensation in red deer stags (Cervus elaphus).
    Suttie JM; Goodall ED; Pennie K; Kay RN
    Br J Nutr; 1983 Nov; 50(3):737-47. PubMed ID: 6639930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluoride content and mineralization of red deer (Cervus elaphus) antlers and pedicles from fluoride polluted and uncontaminated regions.
    Kierdorf U; Richards A; Sedlacek F; Kierdorf H
    Arch Environ Contam Toxicol; 1997 Feb; 32(2):222-7. PubMed ID: 9069201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histological studies of growing and mature antlers of red deer stags (Cervus elaphus).
    Cegielski M; Izykowska I; Podhorska-Okolow M; Gworys B; Zabel M; Dziegiel P
    Anat Histol Embryol; 2009 Jun; 38(3):184-8. PubMed ID: 19469766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal changes in LH and testosterone and their relationship with the first antler in red deer (Cervus elaphus) stags from 3 to 15 months of age.
    Suttie JM; Fennessy PF; Crosbie SF; Corson ID; Laas FJ; Elgar HJ; Lapwood KR
    J Endocrinol; 1991 Dec; 131(3):467-74. PubMed ID: 1783890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Getting the timing right: antler growth phenology and sexual selection in a wild red deer population.
    Clements MN; Clutton-Brock TH; Albon SD; Pemberton JM; Kruuk LE
    Oecologia; 2010 Oct; 164(2):357-68. PubMed ID: 20480184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated plasma IGF 1 levels in stags prevented from growing antlers.
    Suttie JM; Fennessy PF; Gluckman PD; Corson ID
    Endocrinology; 1988 Jun; 122(6):3005-7. PubMed ID: 3371270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal changes in plasma leptin concentration related to antler cycle in Iberian red deer stags.
    Gaspar-López E; Casabiell J; Estevez JA; Landete-Castillejos T; De La Cruz LF; Gallego L; García AJ
    J Comp Physiol B; 2009 Jul; 179(5):617-22. PubMed ID: 19205705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.