These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 5885426)
1. Studies on fine structure and cytochemical properties of erythrophores in swordtail, Xiphophorus helleri, with special reference to their pigment granules (Pterinosomes). Matsumoto J J Cell Biol; 1965 Dec; 27(3):493-504. PubMed ID: 5885426 [TBL] [Abstract][Full Text] [Related]
2. Morphological and biochemical characterization of goldfish erythrophores and their pterinosomes. Matsumoto J; Obika M J Cell Biol; 1968 Nov; 39(2):233-50. PubMed ID: 5692582 [TBL] [Abstract][Full Text] [Related]
3. The erythrophore in the larval and adult dorsal skin of the brown frog, Rana ornativentris: its differentiation, migration, and pigmentary organelle formation. Ichikawa Y; Ohtani H; Miura I Pigment Cell Res; 1998 Dec; 11(6):345-54. PubMed ID: 9870546 [TBL] [Abstract][Full Text] [Related]
4. Structural change of pterinosome (pteridine pigment granule) during the Xanthophore differentiation of Oryzias fish. Kamei-Takeuchi I; Hama T J Ultrastruct Res; 1971 Mar; 34(5):452-63. PubMed ID: 4326520 [No Abstract] [Full Text] [Related]
5. Involvement of pteridines in the body coloration of the isopod Armadillidium vulgare. Negishi S; Hasegawa Y; Katoh S Pigment Cell Res; 1998 Dec; 11(6):368-74. PubMed ID: 9870549 [TBL] [Abstract][Full Text] [Related]
6. Pteridines as reflecting pigments and components of reflecting organelles in vertebrates. Oliphant LW; Hudon J Pigment Cell Res; 1993 Aug; 6(4 Pt 1):205-8. PubMed ID: 8248017 [TBL] [Abstract][Full Text] [Related]
7. The pigmentary system of developing axolotls. I. A biochemical and structural analysis of chromatophores in wild-type axolotls. Frost SK; Epp LG; Robinson SJ J Embryol Exp Morphol; 1984 Jun; 81():105-25. PubMed ID: 6470605 [TBL] [Abstract][Full Text] [Related]
8. Morphologic and biochemical characterization of erythrophoromas in goldfish (Carassius auratus). Ishikawa T; Masahito P; Matsumoto J; Takayama S J Natl Cancer Inst; 1978 Dec; 61(6):1461-70. PubMed ID: 281553 [TBL] [Abstract][Full Text] [Related]
9. Pteridines in the yellow-colored chromatophores of the isopod, Armadillidium vulgare. Nakagoshi M; Takikawa S; Negishi S; Tsusué M Biol Chem Hoppe Seyler; 1992 Dec; 373(12):1249-54. PubMed ID: 1292511 [TBL] [Abstract][Full Text] [Related]
10. Ultramicroscopic study of the developmental change of the xanthophore in the frog, Rana Japonica with special reference to pterinosomes. Yasutomi M; Hama T Dev Growth Differ; 1971 Oct; 13(3):141-9. PubMed ID: 5147852 [No Abstract] [Full Text] [Related]
11. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids. Djurdjevič I; Kreft ME; Sušnik Bajec S J Anat; 2015 Nov; 227(5):583-95. PubMed ID: 26467239 [TBL] [Abstract][Full Text] [Related]
12. Permanent cell lines from erythrophoromas in goldfish (Carassius auratus). Matsumoto J; Ishikawa T; Masahito P; Takayama S J Natl Cancer Inst; 1980 Apr; 64(4):879-90. PubMed ID: 6928999 [TBL] [Abstract][Full Text] [Related]
13. PTERIDINES AS PIGMENTS IN AMPHIBIANS. OBIKA M; BAGNARA JT Science; 1964 Jan; 143(3605):485-7. PubMed ID: 14080320 [TBL] [Abstract][Full Text] [Related]
14. Crystalline pteridines in the stromal pigment cells of the iris of the great horned owl. Oliphant LW Cell Tissue Res; 1981; 217(2):387-95. PubMed ID: 7237534 [TBL] [Abstract][Full Text] [Related]
15. Yellow marking and pteridine contents in the integument of albino Armadillidium vulgare. Negishi S; Sueoka T; Hasegawa Y; Katoh S Pigment Cell Res; 1996 Feb; 9(1):35-41. PubMed ID: 8739559 [TBL] [Abstract][Full Text] [Related]
16. Biosynthesis of "drosopterins" by an enzyme system from Drosophila melanogaster. Dorsett D; Yim JJ; Jacobson KB Biochemistry; 1979 Jun; 18(12):2596-600. PubMed ID: 109114 [TBL] [Abstract][Full Text] [Related]
17. Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores. Kotz KJ; McNiven MA J Cell Biol; 1994 Feb; 124(4):463-74. PubMed ID: 8106546 [TBL] [Abstract][Full Text] [Related]
18. Genetic and correlative light and electron microscopy evidence for the unique differentiation pathway of erythrophores in brown trout skin. Sušnik Bajec S; Djurdjevič I; Linares Andújar C; Kreft ME Sci Rep; 2022 Jan; 12(1):1015. PubMed ID: 35046436 [TBL] [Abstract][Full Text] [Related]
19. Transformations in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion. I. A study using whole-cell preparations in stereo high voltage electron microscopy. Byers HR; Porter KR J Cell Biol; 1977 Nov; 75(2 Pt 1):541-58. PubMed ID: 264122 [TBL] [Abstract][Full Text] [Related]
20. Evidence that MAP-2 may be involved in pigment granule transport in squirrel fish erythrophores. Stearns ME; Binder LI Cell Motil Cytoskeleton; 1987; 7(3):221-34. PubMed ID: 3297355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]