These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 588617)

  • 41. More evidence that light isomerises the cheomophore of purple membrane protein.
    Hurley JB; Becher B; Ebrey TG
    Nature; 1978 Mar; 272(5648):87-8. PubMed ID: 628440
    [No Abstract]   [Full Text] [Related]  

  • 42. Quantum efficiency of the photochemical cycle of bacteriorhodopsin.
    Govindjee R; Balashov SP; Ebrey TG
    Biophys J; 1990 Sep; 58(3):597-608. PubMed ID: 19431766
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Time-resolved resonance Raman characterization of the intermediates of bacteriorhodopsin.
    Terner J; El-Sayed MA
    Biophys J; 1978 Oct; 24(1):262-4. PubMed ID: 708831
    [No Abstract]   [Full Text] [Related]  

  • 44. Photosensitized bleaching of beta-carotene with light at 632.8 nm from a continuous-wave gas laser.
    Hasegawa K; Macmillan JD; Maxwell WA; Chichester CO
    Photochem Photobiol; 1969 Feb; 9(2):165-9. PubMed ID: 5776773
    [No Abstract]   [Full Text] [Related]  

  • 45. Going in the red.
    Nature; 1973 May; 243(5401):7. PubMed ID: 4621106
    [No Abstract]   [Full Text] [Related]  

  • 46. Photochemical and stereochemical properties of carotenoids at low temperatures.
    JURKOWITZ L; LOEB JN; BROWN PK; WALD G
    Nature; 1959 Aug; 184():614-24. PubMed ID: 13853188
    [No Abstract]   [Full Text] [Related]  

  • 47. Effect of low temperature on the absorption spectra of haemoproteins; with observations on the absorption spectrum of oxygen.
    KEILIN D; HARTREE EF
    Nature; 1949 Aug; 164(4163):254-9. PubMed ID: 18139359
    [No Abstract]   [Full Text] [Related]  

  • 48. On the structure of rhodopsin. 3. A method for determining the spectral absorption maxima of the intermediates following light absorption.
    Buckser S
    Am J Optom Arch Am Acad Optom; 1970 Dec; 47(12):976-82. PubMed ID: 5277351
    [No Abstract]   [Full Text] [Related]  

  • 49. Sharper action spectra.
    French CS
    Photochem Photobiol; 1977 Feb; 25(2):159-60. PubMed ID: 866448
    [No Abstract]   [Full Text] [Related]  

  • 50. Fully independent photochemical reactivity in one molecule.
    Marschner DE; Franck CO; Abt D; Mutlu H; Barner-Kowollik C
    Chem Commun (Camb); 2019 Aug; 55(66):9877-9880. PubMed ID: 31364618
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Phototropic-isomeric diradicals as reactive intermediates in photochemical reactions].
    SCHENCK GO
    Z Naturforsch B; 1948; 3B(1-2):59. PubMed ID: 18882785
    [No Abstract]   [Full Text] [Related]  

  • 52. THE APPLICABILITY OF THE PHOTOCHEMICAL ENERGY-LAW TO LIGHT REACTIONS IN ANIMALS.
    Ewald WF
    Science; 1913 Aug; 38(972):236-7. PubMed ID: 17842645
    [No Abstract]   [Full Text] [Related]  

  • 53. INFLUENCE OF POLARIZED LIGHT ON PHOTOCHEMICAL REACTIONS.
    Macht DI
    Science; 1927 Dec; 66(1722):653. PubMed ID: 17815475
    [No Abstract]   [Full Text] [Related]  

  • 54. Low temperature FTIR study of the Schiff base reprotonation during the M-to-bR backphotoreaction: Asp 85 reprotonates two distinct types of Schiff base species at different temperatures.
    Takei H; Gat Y; Sheves M; Lewis A
    Biophys J; 1992 Dec; 63(6):1643-53. PubMed ID: 19431867
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photocycle of dried acid purple form of bacteriorhodopsin.
    Groma GI; Kelemen L; Kulcsár A; Lakatos M; Váró G
    Biophys J; 2001 Dec; 81(6):3432-41. PubMed ID: 11721005
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural characterization of the L-to-M transition of the bacteriorhodopsin photocycle.
    Hendrickson FM; Burkard F; Glaeser RM
    Biophys J; 1998 Sep; 75(3):1446-54. PubMed ID: 9726946
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electric response of a back photoreaction in the bacteriorhodopsin photocycle.
    Ormos P; Dancsházy Z; Keszthelyi L
    Biophys J; 1980 Aug; 31(2):207-13. PubMed ID: 6266533
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [New intermediates in the photochemical transformation of rhodopsin].
    Litvin FF; Balashov SP
    Biofizika; 1977; 22(6):1111-4. PubMed ID: 588617
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [EPR and low temperature spectrophotometric study of the phototransformation products of bacteriorhodopsin].
    Rikhireva GT; Pulatova MK; Balashov SP; Nazarova NM; Chekulaeva LN
    Biofizika; 1976 Nov; 21(6):1038-45. PubMed ID: 188491
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Spectral transformations in purple membranes of Halobacterium halobium: effect of 560-570 transition and blue light on photochemical processes].
    Vsevolodov NN; Chekulaeva LN
    Biofizika; 1978; 23(6):1019-23. PubMed ID: 719015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.