These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 5889957)

  • 1. Sarcolemma: transmitter of active tension in frog skeletal muscle.
    Street SF; Ramsey RW
    Science; 1965 Sep; 149(3690):1379-80. PubMed ID: 5889957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters.
    Street SF
    J Cell Physiol; 1983 Mar; 114(3):346-64. PubMed ID: 6601109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of the sarcolemma and myoplasm in frog muscle as a function of sarcomere length.
    Rapoport SI
    J Gen Physiol; 1972 May; 59(5):559-85. PubMed ID: 4537306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contractile properties of mouse single muscle fibers, a comparison with amphibian muscle fibers.
    Edman KA
    J Exp Biol; 2005 May; 208(Pt 10):1905-13. PubMed ID: 15879071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MUSCULAR CONTRACTION AS REGULATED BY THE ACTION POTENTIAL.
    SANDOW A; PREISER H
    Science; 1964 Dec; 146(3650):1470-2. PubMed ID: 14208573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers.
    Westerblad H; Allen DG
    J Gen Physiol; 1991 Sep; 98(3):615-35. PubMed ID: 1761971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue and posttetanic potentiation in single muscle fibers of the frog.
    Vergara JL; Rapoprot SI; Nassar-Gentina V
    Am J Physiol; 1977 May; 232(5):C185-90. PubMed ID: 300990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the maximum speed of shortening of frog muscle fibres early in a tetanic contraction and during relaxation.
    Josephson RK; Edman KA
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):511-25. PubMed ID: 9518709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some effects of hypertonic solutions on contraction and excitation-contraction coupling in frog skeletal muscles.
    Gordon AM; Godt RE
    J Gen Physiol; 1970 Feb; 55(2):254-75. PubMed ID: 5415044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in tetanic and resting [Ca2+]i during fatigue and recovery of single muscle fibres from Xenopus laevis.
    Lee JA; Westerblad H; Allen DG
    J Physiol; 1991 Feb; 433():307-26. PubMed ID: 1841942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane healing and restoration of contractility after mechanical injury in isolated skeletal muscle fibers of the frog.
    Gonzalez-Serratos H; Rozycka M; Cordoba-Rodriguez R; Ortega A
    Proc Natl Acad Sci U S A; 1996 Jun; 93(12):5996-6001. PubMed ID: 8650208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of muscle contraction on the load-strain properties of frog aponeurosis and tendon.
    Lieber RL; Leonard ME; Brown-Maupin CG
    Cells Tissues Organs; 2000; 166(1):48-54. PubMed ID: 10671755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Earliest mechanical evidence of cross-bridge activity after stimulation of single skeletal muscle fibers.
    Claflin DR; Morgan DL; Julian FJ
    Biophys J; 1990 Mar; 57(3):425-32. PubMed ID: 2306493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tension transients after quick release in rat and frog skeletal muscles.
    Blangé T; Karemaker JM; Kramer AE
    Nature; 1972 Jun; 237(5353):281-3. PubMed ID: 4557462
    [No Abstract]   [Full Text] [Related]  

  • 16. Active tension changes in frog skeletal muscle during and after mechanical extension.
    van Atteveldt H; Crowe A
    J Biomech; 1980; 13(4):323-31. PubMed ID: 6967487
    [No Abstract]   [Full Text] [Related]  

  • 17. Birefringence changes associated with isometric contraction and rapid shortening steps in frog skeletal muscle fibres.
    Irving M
    J Physiol; 1993 Dec; 472():127-56. PubMed ID: 8145138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanical properties and heat production of chicken latissimus dorsi muscles during tetanic contractions.
    Canfield SP
    J Physiol; 1971 Dec; 219(2):281-302. PubMed ID: 5158384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of tension time on muscle fiber sarcolemmal injury in rat diaphragm.
    Zhu E; Comtois AS; Fang L; Comtois NR; Grassino AE
    J Appl Physiol (1985); 2000 Jan; 88(1):135-41. PubMed ID: 10642373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechano-sensitive linkage in excitation-contraction coupling in frog skeletal muscle.
    Bruton JD; Lännergren J; Westerblad H
    J Physiol; 1995 May; 484 ( Pt 3)(Pt 3):737-42. PubMed ID: 7623288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.