These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 5892806)

  • 1. Deoxyribosyl exchange activity associated with nucleoside phosphorylase.
    Abrams R; Edmonds M; Libenson L
    Biochem Biophys Res Commun; 1965 Jul; 20(3):310-4. PubMed ID: 5892806
    [No Abstract]   [Full Text] [Related]  

  • 2. Purine nucleoside phosphorylase: kinetics, mechanism, and specificity.
    Krenitsky TA
    Mol Pharmacol; 1967 Nov; 3(6):526-36. PubMed ID: 6059869
    [No Abstract]   [Full Text] [Related]  

  • 3. DEOXYRIBOSYL-8-AZAADENINE. ITS DEAMINATION TO DEOXYRIBOSYL-8-AZAHYPOXANTHINE AND EFFECT ON NUCLEIC ACID SYNTHESIS IN EHRLICH ASCITES CELLS IN VITRO.
    FREDERIKSEN S
    Biochim Biophys Acta; 1964 Aug; 87():574-82. PubMed ID: 14220687
    [No Abstract]   [Full Text] [Related]  

  • 4. Selective inhibition by deoxyglucosyl thymine of thymidine phosphorylases not catalyzing deoxyribosyl transfer.
    Zimmerman M
    Biochem Biophys Res Commun; 1964 Aug; 16(6):600-3. PubMed ID: 4288794
    [No Abstract]   [Full Text] [Related]  

  • 5. DEOXYRIBOSYL TRANSFER. II. NUCLEOSIDE:PYRIMIDINE DEOXYRIBOSYLTRANSFERASE ACTIVITY OF THREE PARTIALLY PURIFIED THYMIDINE PHOSPHORYLASES.
    ZIMMERMAN M
    J Biol Chem; 1964 Aug; 239():2622-7. PubMed ID: 14235545
    [No Abstract]   [Full Text] [Related]  

  • 6. DEOXYRIBOSYL TRANSFER. I. THYMIDINE PHOSPHORYLASE AND NUCLEOSIDE DEOXYRIBOSYLTRANSFERASE IN NORMAL AND MALIGNANT TISSUES.
    ZIMMERMAN M; SEIDENBERG J
    J Biol Chem; 1964 Aug; 239():2618-21. PubMed ID: 14235544
    [No Abstract]   [Full Text] [Related]  

  • 7. Ribosyl and deoxyribosyl transfer by bacterial enzyme systems.
    Imada A; Igarasi S
    J Bacteriol; 1967 Nov; 94(5):1551-9. PubMed ID: 4863982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deoxyribosyl transfer. 3. Catalysis of 3-pentosylpurine formation by pyrimidine nucleoside phosphorylases.
    Zimmerman M
    J Biol Chem; 1966 Nov; 241(21):4914-6. PubMed ID: 5332665
    [No Abstract]   [Full Text] [Related]  

  • 9. [Some peculiarities in inosine and ribose-5-phosphate metabolism in myocardium].
    Golovatskiĭ ID; Vygnan DS
    Ukr Biokhim Zh; 1969; 41(2):141-4. PubMed ID: 5404203
    [No Abstract]   [Full Text] [Related]  

  • 10. Pentose phosphates in nucleoside interconversion and catabolism.
    Tozzi MG; Camici M; Mascia L; Sgarrella F; Ipata PL
    FEBS J; 2006 Mar; 273(6):1089-101. PubMed ID: 16519676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FLUORINATED PYRIMIDINES. XX. INHIBITION OF THE NUCLEOSIDE PHOSPHORYLASE CLEAVAGE OF 5-FLUORO-2'-DEOXYURIDINE BY 5-TRIFLUOROMETHYL-2'-DEOXYURIDINE.
    HEIDELBERGER C; BIRNIE GD; BOOHAR J; WENTLAND D
    Biochim Biophys Acta; 1963 Oct; 76():315-8. PubMed ID: 14097389
    [No Abstract]   [Full Text] [Related]  

  • 12. NUCLEOSIDE METABOLISM IN EHRLICH ASCITES TUMOR CELLS: PHOSPHOROLYSIS OF PURINE NUCLEOSIDES.
    GOTTO AM; MEIKLE AW; TOUSTER O
    Biochim Biophys Acta; 1964 Apr; 80():552-61. PubMed ID: 14156727
    [No Abstract]   [Full Text] [Related]  

  • 13. The metabolism of purine compounds in Ehrlich ascites tumor cells: evidence for a salvage pathway of inosine metabolism.
    Meikle AW; Gotto AM; Touster O
    Biochim Biophys Acta; 1967 May; 138(3):445-51. PubMed ID: 6036845
    [No Abstract]   [Full Text] [Related]  

  • 14. Stimulatory effects of inosine and deoxyinosine on the incorporation of uracil-2-14-C, 5-fluorouracil-2-14-C, and 5-bromouracil-2-14-C into nucleic acids by Ehrlich ascites tumor cells in vitro.
    Gotto AM; Belkhode ML; Touster O
    Cancer Res; 1969 Apr; 29(4):807-11. PubMed ID: 5775710
    [No Abstract]   [Full Text] [Related]  

  • 15. Separation and modification of the phosphorolytic and ribosyl transfer activities of the purine nucleoside phosphorylase of Ehrlich ascites tumor cells.
    Pinto B; Touster O
    J Biol Chem; 1966 Feb; 241(3):772-3. PubMed ID: 5908144
    [No Abstract]   [Full Text] [Related]  

  • 16. Ribose-enhanced synthesis of UTP, CTP, and GTP from parent nucleosides in cardiac myocytes.
    Geisbuhler TP; Schwager TL
    J Mol Cell Cardiol; 1998 Apr; 30(4):879-87. PubMed ID: 9602437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide metabolism in Ehrlich ascites carcinoma cells.
    Fridland A; Scholefield PG
    Biochim Biophys Acta; 1969 Jun; 182(2):295-306. PubMed ID: 5815932
    [No Abstract]   [Full Text] [Related]  

  • 18. Metabolism of pyrimidine bases and nucleosides by pyrimidine-nucleoside phosphorylases in cultured human lymphoid cells.
    Pérignon JL; Bories DM; Houllier AM; Thuillier L; Cartier PH
    Biochim Biophys Acta; 1987 Apr; 928(2):130-6. PubMed ID: 3567226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. METABOLIC STUDIES ON THE SUGARS OF NUCLEIC ACIDS. I. THE ISOLATION OF PYRIMIDINE-BOUND SUGARS AND UTILIZATION OF (14C6)GLUCOSE FOR RIBOSE FORMATION IN MAMMALIAN TISSUES IN VITRO.
    ITZHAKI S
    Biochim Biophys Acta; 1964 Aug; 87():541-53. PubMed ID: 14223707
    [No Abstract]   [Full Text] [Related]  

  • 20. The enzymatic mechanisms for deoxythymidine synthesis in human leukocytes. II. Comparison of deoxyribosyl donors.
    Gallo RC; Breitman TR
    J Biol Chem; 1968 Oct; 243(19):4936-42. PubMed ID: 5679973
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.