These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 5901059)

  • 1. The metabolism of aromatic compounds in higher plants. VII. The origin of the nitrile nitrogen atom of dhurrin (beta-D-glucopyranosyloxy-L-p-hydroxymandelonitrile).
    Uribe EG; Conn EE
    J Biol Chem; 1966 Jan; 241(1):92-4. PubMed ID: 5901059
    [No Abstract]   [Full Text] [Related]  

  • 2. The in vitro biosynthesis of dhurrin, the cyanogenic glycoside of Sorghum bicolor.
    MacFarlane IJ; Lees EM; Conn EE
    J Biol Chem; 1975 Jun; 250(12):4708-13. PubMed ID: 237909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of cyanogenic glycosides.
    Conn EE
    Biochem Soc Symp; 1973; (38):277-302. PubMed ID: 4620367
    [No Abstract]   [Full Text] [Related]  

  • 4. Conversion of alpha-keto-isovaleric acid oxime and isobutyraldoxime to linamarin in flax seedlings.
    Tapper BA; Conn EE; Butler GW
    Arch Biochem Biophys; 1967 Mar; 119(1):593-5. PubMed ID: 6059220
    [No Abstract]   [Full Text] [Related]  

  • 5. Isosuccinimide-beta-glucoside, the glucosyl donor in the synthesis of ethyl-beta-glucoside by pea seedling extracts.
    Liu TY; Castelfrance PA
    Arch Biochem Biophys; 1968 Mar; 123(3):645-6. PubMed ID: 5650320
    [No Abstract]   [Full Text] [Related]  

  • 6. Stereochemical aspects of the biosynthesis of the epimeric cyanogenic glucosides dhurrin and taxiphyllin.
    Rosen MA; Farnden KJ; Conn EE
    J Biol Chem; 1975 Nov; 250(21):8302-8. PubMed ID: 1194256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oximes, nitriles and 2-hydroxynitriles as precursors in the biosynthesis of cyanogenic glucosides.
    Tapper BA; Butler GW
    Biochem J; 1971 Oct; 124(5):935-41. PubMed ID: 5131015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biosynthesis of cyanogenic glucosides in higher plants. N-Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (Linn) Moench.
    Møller BL; Conn EE
    J Biol Chem; 1979 Sep; 254(17):8575-83. PubMed ID: 468842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanogenesis in Thalictrum spp.
    Abrol YP
    Indian J Biochem; 1969 Dec; 6(4):227-8. PubMed ID: 4245429
    [No Abstract]   [Full Text] [Related]  

  • 10. The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from Sorghum bicolor (linn) Moench.
    Møller BL; Conn EE
    J Biol Chem; 1980 Apr; 255(7):3049-56. PubMed ID: 7358727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of asparagine from beta-L-[4C-15N]cyanoalanine in Lathyrus sylvestris W. seedlings. Origin of the amide nitrogen.
    Ressler C; Nagarajan GR; Lauinger C
    Biochim Biophys Acta; 1969 Sep; 184(3):578-82. PubMed ID: 5821021
    [No Abstract]   [Full Text] [Related]  

  • 12. Biosynthesis and metabolism of hydroxyphenylacetic acids in higher plants.
    Kindl H
    Eur J Biochem; 1969 Jan; 7(3):340-7. PubMed ID: 5791579
    [No Abstract]   [Full Text] [Related]  

  • 13. The origin of the glucosidic linkage oxygen of the cyanogenic glucosides, linamarin and lotaustralin.
    Zilg H; Tapper BA; Conn EE
    J Biol Chem; 1972 Apr; 247(8):2384-6. PubMed ID: 5019952
    [No Abstract]   [Full Text] [Related]  

  • 14. The metabolism of aromatic compounds in higher plants. VI. Studies on the biosynthesis of dhurrin, the cyanogenic glucoside of Sorghum vulgare.
    KOUKOL J; MILJANICH P; CONNEE
    J Biol Chem; 1962 Oct; 237():3223-8. PubMed ID: 14035111
    [No Abstract]   [Full Text] [Related]  

  • 15. The in vitro biosynthesis of taxiphyllin and the channeling of intermediates in Triglochin maritima.
    Cutler AJ; Hösel W; Sternberg M; Conn EE
    J Biol Chem; 1981 May; 256(9):4253-8. PubMed ID: 7012151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biosynthesis of cyanogenic glucosides in higher plants. Identification of three hydroxylation steps in the biosynthesis of dhurrin in Sorghum bicolor (L.) Moench and the involvement of 1-ACI-nitro-2-(p-hydroxyphenyl)ethane as an intermediate.
    Halkier BA; Møller BL
    J Biol Chem; 1990 Dec; 265(34):21114-21. PubMed ID: 2250015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of nitriles and alpha-hydroxynitriles to cyanogenic glucosides in flax seedlings and cherry laurel leaves.
    Hahlbrock K; Tapper BA; Butler GW; Conn EE
    Arch Biochem Biophys; 1968 Jun; 125(3):1013-6. PubMed ID: 5677586
    [No Abstract]   [Full Text] [Related]  

  • 18. [Hydrocyanic acid and hydrocyanic acid glycoside. A review].
    Tschiersch B
    Pharmazie; 1967 Feb; 22(2):76-82. PubMed ID: 4177257
    [No Abstract]   [Full Text] [Related]  

  • 19. [Biosynthetic incorporation of external S35-O-2 into glucobrassicin].
    Kutácek M; Spálený J; Oplistilová K
    Experientia; 1966 Jan; 22(1):24-5. PubMed ID: 5915126
    [No Abstract]   [Full Text] [Related]  

  • 20. On the mechanism of iridoid and secoiridoid monoterpene biosynthesis.
    Coscia CJ; Botta L; Guarnaccia R
    Arch Biochem Biophys; 1970 Feb; 136(2):498-506. PubMed ID: 5435439
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.