These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 5901783)

  • 1. Hydrolytic and trans-eliminative degradation of pectic substances by extracellular enzymes of Fusarium solani f. phaseoli.
    Bateman DF
    Phytopathology; 1966 Feb; 56(2):238-44. PubMed ID: 5901783
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi.
    Nimchua T; Punnapayak H; Zimmermann W
    Biotechnol J; 2007 Mar; 2(3):361-4. PubMed ID: 17136729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies in the pectic enzymes of parasitic fungi, VII. Factors affecting the production of polygalacturonase and pectin-esterase enzymes by Fusarium orthoceras App. & Wr. var. ciceri Padwick.
    Gupta MN; Gupta SC
    Mycopathol Mycol Appl; 1966 May; 29(1):193-200. PubMed ID: 5975555
    [No Abstract]   [Full Text] [Related]  

  • 4. Contribution of hydrolytic enzymes produced by saprophytic fungi to the decrease in plant toxicity caused by water-soluble substances in olive mill dry residue.
    Aranda E; Sampedro I; Ocampo JA; García-Romera I
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):132-5. PubMed ID: 12811426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi.
    Alisch-Mark M; Herrmann A; Zimmermann W
    Biotechnol Lett; 2006 May; 28(10):681-5. PubMed ID: 16791721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review.
    Kikot GE; Hours RA; Alconada TM
    J Basic Microbiol; 2009 Jun; 49(3):231-41. PubMed ID: 19025875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eliminative split of pectic substances by phytopathogenic soft-rot bacteria.
    STARR MP; MORAN F
    Science; 1962 Mar; 135(3507):920-1. PubMed ID: 13916373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protopectinase, polygalacturonase, cellulases, -glucosidase & fusaric acid of Fusarium oxysporum f. melonis.
    Bhaskaran R; Prasad NN
    Indian J Exp Biol; 1971 Oct; 9(4):516-8. PubMed ID: 5147186
    [No Abstract]   [Full Text] [Related]  

  • 9. Isolation and characterization of a cutinase from Fusarium roseum culmorum and its immunological comparison with cutinases from F. solani pisi.
    Soliday CL; Kolattukudy PE
    Arch Biochem Biophys; 1976 Sep; 176(1):334-43. PubMed ID: 9910
    [No Abstract]   [Full Text] [Related]  

  • 10. Production of Fusarium solani f. sp. pisi cutinase in Fusarium venenatum A3/5.
    Sørensen JD; Petersen EI; Wiebe MG
    Biotechnol Lett; 2007 Aug; 29(8):1227-32. PubMed ID: 17505784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study of availability of some hydrolytic and redox enzymes in strains of Fusarium oxysporum (Schlecht.) Snyd. and Hans. isolated from different habitats].
    Kurchenko IM; Zhdanova NM; Sokolova OV
    Mikrobiol Z; 2001; 63(5):34-43. PubMed ID: 11785419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Levanase from Fusarium solani-68].
    Elisashvili VI; Loitsianskaia MS; Baranova TI; Bangura A
    Prikl Biokhim Mikrobiol; 1980; 16(3):342-6. PubMed ID: 7433428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depolymerization of a hydroxy fatty acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani f. pisi: isolation and some properties of the enzyme.
    Purdy RE; Kolattukudy PE
    Arch Biochem Biophys; 1973 Nov; 159(1):61-9. PubMed ID: 4784475
    [No Abstract]   [Full Text] [Related]  

  • 14. High-level expression and characterization of Fusarium solani cutinase in Pichia pastoris.
    Kwon MA; Kim HS; Yang TH; Song BK; Song JK
    Protein Expr Purif; 2009 Nov; 68(1):104-9. PubMed ID: 19580870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Damping-off in conifer seedling nurseries in Noshahr and Kelardasht.
    Zad SJ; Koshnevice M
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):91-3. PubMed ID: 12425024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Hydrolytic properties of fungi isolated from coarse fodder in southern Kazakhstan].
    Zhakhanov A; Aĭzenberg VL; Musich EG; Shkol'nyĭ AT
    Mikrobiol Zh (1978); 1979; 41(6):651-9. PubMed ID: 160004
    [No Abstract]   [Full Text] [Related]  

  • 17. [Pectolytic enzymes formed by Penicillium and Fusarium micromycetes].
    Devdariani TG; Aĭzenberg VL; Bilaĭ TI; Zakordonets LA; Mudzhiri LA
    Prikl Biokhim Mikrobiol; 1982; 18(2):207-11. PubMed ID: 7082428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibiotic inhibition of pectolytic and cellulolytic enzyme activity in two Fusarium species.
    Mehta A; Chopra S; Mehta P
    Mycopathologia; 1993 Dec; 124(3):185-8. PubMed ID: 8022465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass production and secretion of hydrolytic enzymes are influenced by the structural complexity of the nitrogen source in Fusarium oxysporum and Aspergillus nidulans.
    da Silva MC; Bertolini MC; Ernandes JR
    J Basic Microbiol; 2001; 41(5):269-80. PubMed ID: 11688213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo design, synthesis and screening of a combinatorial library of complementary ligands directed towards the surface of cutinase from Fusarium solani pisi.
    Ruiu L; Roque AC; Taipa MA; Lowe CR
    J Mol Recognit; 2006; 19(4):372-8. PubMed ID: 16779873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.