These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 590505)

  • 21. Pathways of alpha 1-adrenergic action: comparison with V1-vasopressin and A1-angiotensin.
    Garcia-Sáinz JA
    Circ Res; 1987 Nov; 61(5 Pt 2):II1-5. PubMed ID: 2822282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulation of [1-14C]oleate oxidation to 14CO2 in isolated rat hepatocytes by the catecholamines, vasopressin and angiotensin. A possible mechanism of action.
    Sugden MC; Watts DI
    Biochem J; 1983 Apr; 212(1):85-91. PubMed ID: 6409102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of calcium in alpha-adrenergic inactivation of glycogen synthase in rat hepatocytes and its inhibition by insulin.
    Strickland WG; Blackmore PF; Exton JH
    Diabetes; 1980 Aug; 29(8):617-22. PubMed ID: 6777224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vasopressin and norepinephrine stimulation of inositol phosphate accumulation in rat hepatocytes are modified differently by protein f1nase C and protein kinase A.
    Pittner RA; Fain JN
    Biochim Biophys Acta; 1990 Apr; 1043(2):211-7. PubMed ID: 2107881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of cyclic AMP-dependent hormones and Ca2+-mobilizing hormones on the Ca2+ influx and polyphosphoinositide metabolism in isolated rat hepatocytes.
    Poggioli J; Mauger JP; Claret M
    Biochem J; 1986 May; 235(3):663-9. PubMed ID: 3019304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is vasopressin-stimulated inositol lipid breakdown intrinsic to the mechanism of Ca2+-mobilization at V1 vasopressin receptors?
    Kirk CJ; Creba JA; Hawkins PT; Michell RH
    Prog Brain Res; 1983; 60():405-11. PubMed ID: 6320275
    [No Abstract]   [Full Text] [Related]  

  • 27. Stimulation, by vasopressin and other agonists, of inositol-lipid breakdown and inositol phosphate accumulation in WRK 1 cells.
    Kirk CJ; Guillon G; Balestre MN; Jard S
    Biochem J; 1986 Nov; 240(1):197-204. PubMed ID: 3827839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the effects of muscarine and vasopressin on inositol phospholipid metabolism in the superior cervical ganglion of the rat.
    Horwitz J; Anderson CH; Perlman RL
    J Pharmacol Exp Ther; 1986 Apr; 237(1):312-7. PubMed ID: 3007742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on protein kinase C and inositol phosphate metabolism in primary cultures of rat hepatocytes.
    Wölfle D; Schmutte C; Marquardt H
    Carcinogenesis; 1993 Nov; 14(11):2283-7. PubMed ID: 8242856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of hyperthyroidism on stimulation of [1-14C]oleate oxidation to 14CO2 in isolated hepatocytes from fed rats by the catecholamines, vasopressin, and angiotensin II.
    Sugden MC; El-Saadi A; Goode AW; Orr JS
    Biosci Rep; 1983 Aug; 3(8):757-65. PubMed ID: 6414548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis of phosphatidyl myoinositol phosphates in rabbit brain.
    Saunders RM; Ballou CE
    Biochemistry; 1966 Jan; 5(1):352-8. PubMed ID: 4287218
    [No Abstract]   [Full Text] [Related]  

  • 32. The relationship between the incorporation of 32P into phosphatidic acid and phosphatidylinositol in rat parotid acinar cells.
    Miller JC; Kowal CN
    Biochem Biophys Res Commun; 1981 Oct; 102(3):999-1007. PubMed ID: 7306202
    [No Abstract]   [Full Text] [Related]  

  • 33. Effects of insulin on inositol phosphate production in cultured rat hepatocytes.
    Pittner RA; Fain JN
    Biochim Biophys Acta; 1990 Apr; 1043(2):218-24. PubMed ID: 2180488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in free cytosolic calcium and accumulation of inositol phosphates in isolated hepatocytes by [Leu]enkephalin.
    Leach RP; Shears SB; Kirk CJ; Titheradge MA
    Biochem J; 1986 Sep; 238(2):537-42. PubMed ID: 3800950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of EGF on the mass of inositol 1,4,5-trisphosphate and SN(1,2)-diacylglycerol in freshly isolated rat hepatocytes: comparison with vasopressin.
    Cerpovicz PF; Ochs RS
    Biochem Biophys Res Commun; 1992 Sep; 187(2):1055-62. PubMed ID: 1326947
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effect of calcium antagonists on the metabolism of phosphoinositides in isolated liver cells].
    Jakus J; Veres Z; Kulinyi G; Dénes G
    Acta Pharm Hung; 1989; 59 Suppl 1():49-53. PubMed ID: 2561909
    [No Abstract]   [Full Text] [Related]  

  • 37. Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function.
    Kirk CJ; Creba JA; Downes CP; Michell RH
    Biochem Soc Trans; 1981 Oct; 9(5):377-9. PubMed ID: 6269920
    [No Abstract]   [Full Text] [Related]  

  • 38. Incorporation of phosphate into diphosphoinositide by subcellular fractions from liver.
    Galliard T; Michell RH; Hawthorne JN
    Biochim Biophys Acta; 1965 Dec; 106(3):551-63. PubMed ID: 4286604
    [No Abstract]   [Full Text] [Related]  

  • 39. Stimulation by vasopressin and angiotensin of phospholipid methyltransferase in isolated rat hepatocytes.
    Alemany S; Varela I; Mato JM
    FEBS Lett; 1981 Nov; 135(1):111-4. PubMed ID: 6797839
    [No Abstract]   [Full Text] [Related]  

  • 40. Influence of chronic ethanol treatment on alpha1-adrenergic and vasopressin receptor-stimulated phosphatidylinositol synthesis in isolated rat hepatocytes.
    Smith TL; Vickers AE; Brendel K; Yamamura HI
    Biochem Pharmacol; 1983 Oct; 32(20):3059-62. PubMed ID: 6315016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.