These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 5907879)

  • 1. [Influence of the calcium concentration of the media on the transport of potassium in guinea pig renal cortex slices].
    Reinberg A; Stolkowski J
    J Physiol (Paris); 1966; 58(1):21-30. PubMed ID: 5907879
    [No Abstract]   [Full Text] [Related]  

  • 2. [Transport of potassium and the synthesis of phospholipids in slices of guinea pig renal cortex].
    Starer-Mendes H; Lubochinsky B; Stolkowski J
    J Physiol (Paris); 1968; 60(1):67-84. PubMed ID: 5674416
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of norepinephrine on NaCl extrusion in guinea-pig kidney cortex slices.
    Proverbio F; Yaris GI; Proverbio T; Marín R
    Acta Cient Venez; 1986; 37(5):519-25. PubMed ID: 2834904
    [No Abstract]   [Full Text] [Related]  

  • 4. [Adrenergic receptors and active ion transport of kidney cortex slices in guinea pigs].
    Yaris GI; Marín R; Proverbio T; Proverbio F
    Acta Cient Venez; 1988; 39(3):237-44. PubMed ID: 3251386
    [No Abstract]   [Full Text] [Related]  

  • 5. Ionic requirements in histamine-evoked potassium efflux in guinea pig pancreas.
    Rosado JA; García LJ; Salido GM
    Rev Esp Fisiol; 1997 Jun; 53(2):231-7. PubMed ID: 9291535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The function of calcium in the regulation of potassium accumulation in guinea pig brain cortex slices.
    GARDOS G
    Acta Physiol Acad Sci Hung; 1961; 18():265-9. PubMed ID: 13703640
    [No Abstract]   [Full Text] [Related]  

  • 7. Guanethidine effects on the guinea pig vas deferens are antagonized by the blockers of calcium-activated potassium conductance, apamin, methylene blue, and quinine.
    Stutzin A; Paravic F; Ormenño G; Orrego F
    Mol Pharmacol; 1983 Mar; 23(2):409-16. PubMed ID: 6300650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal handling of phosphate, calcium, sodium, and potassium in intact and parathyroidectomized Rana pipiens.
    Sasayama Y; Clark NB
    J Exp Zool; 1984 Feb; 229(2):197-203. PubMed ID: 6610722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors influencing the 42K efflux from the smooth muscle of guinea-pig taenia coli.
    Setekleiv J
    J Physiol; 1967 Jan; 188(2):39P-40P. PubMed ID: 6030532
    [No Abstract]   [Full Text] [Related]  

  • 10. [Transport of lithium in rat renal cortex slices].
    Günther C; Kersten L; Bräunlich H
    Biomed Biochim Acta; 1983; 42(6):751-62. PubMed ID: 6314999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relations between metabolism and the rate of turnover of sodium and potassium in guinea pig kidney-cortex slices.
    WHITTAM R; DAVIES RE
    Biochem J; 1954 Mar; 56(3):445-53. PubMed ID: 13140226
    [No Abstract]   [Full Text] [Related]  

  • 12. [The renal transport of sodium, potassium, calcium and phosphorus in patients with a history of hemorrhagic fever with renal syndrome].
    Sirotin BZ; Zharskiĭ SL; Shapiro IA
    Ter Arkh; 1994; 66(12):42-4. PubMed ID: 7900043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of hemolysate and calcium ions on transport ATPase activity in guinea pig erythrocytes].
    Matskevich IuA; Kazennov AM
    Zh Evol Biokhim Fiziol; 1994; 30(6):738-45. PubMed ID: 8721317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of nitric oxide in Ca2+ sensitivity of the slowly activating delayed rectifier K+ current in cardiac myocytes.
    Bai CX; Namekata I; Kurokawa J; Tanaka H; Shigenobu K; Furukawa T
    Circ Res; 2005 Jan; 96(1):64-72. PubMed ID: 15569827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane.
    Xu W; Liu Y; Wang S; McDonald T; Van Eyk JE; Sidor A; O'Rourke B
    Science; 2002 Nov; 298(5595):1029-33. PubMed ID: 12411707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium accumulation in guinea pig brain cortex slices.
    GARDOS G
    J Neurochem; 1960 Feb; 5():199-201. PubMed ID: 13826552
    [No Abstract]   [Full Text] [Related]  

  • 17. [ACTION OF TEMPERATURE ON POTASSIUM AND RIBONUCLEIC ACID IN SECTIONS OF GUINEA PIG RENAL CORTEX].
    STOLKOWSKI J; REINBERG A; LUBOCHINSKY B
    J Physiol (Paris); 1964; 56():829-48. PubMed ID: 14292271
    [No Abstract]   [Full Text] [Related]  

  • 18. [Analysis of changes in volume and K+ and Na+ content in cerebral tissue (cortical gray substance of the guinea pig and human cerebral cortex) perfused "in vitro" with isotonic solutions of different potassium concentrations].
    Ridolo P; Tiripicchio I; De Risio C; Campanini T
    Riv Neurobiol; 1966; 12(2):235-50. PubMed ID: 5960678
    [No Abstract]   [Full Text] [Related]  

  • 19. Characteristics of ion transport in kidney cortex of mammalian hibernators.
    Willis JS
    J Gen Physiol; 1966 Jul; 49(6):1221-39. PubMed ID: 5924109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Movement of sodium and potassium in renal cells].
    Whittembury G
    Acta Cient Venez; 1965; 16(4):140-1. PubMed ID: 5862790
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.