BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 590939)

  • 1. [Modification of arginine residues in pyruvate kinase (author's transl)].
    Berghäuser J
    Hoppe Seylers Z Physiol Chem; 1977 Dec; 358(12):1565-72. PubMed ID: 590939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine residues in the active centers of muscle pyruvate dehydrogenase.
    Nemerya NS; Khailova LS; Severin SE
    Biochem Int; 1984 Mar; 8(3):369-76. PubMed ID: 6477608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteinyl peptides labeled by dibromobutanedione in reaction with rabbit muscle pyruvate kinase.
    Vollmer SH; Colman RF
    Protein Sci; 1992 May; 1(5):678-87. PubMed ID: 1304366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of an arginine residue of a base-nonspecific ribonuclease from Aspergillus saitoi.
    Watanabe H; Ohgi K; Irie M
    J Biochem; 1979 May; 85(5):1315-20. PubMed ID: 447619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of phenylglyoxal with the human erythrocyte (Ca2+ + Mg2+)-ATPase. Evidence for the presence of an essential arginyl residue.
    Raess BU; Record DM; Tunnicliff G
    Mol Pharmacol; 1985 Apr; 27(4):444-50. PubMed ID: 3157046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical modification studies on alkaline phosphatase from pearl oyster (Pinctada fucata): a substrate reaction course analysis and involvement of essential arginine and lysine residues at the active site.
    Chen HT; Xie LP; Yu ZY; Xu GR; Zhang RQ
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1446-57. PubMed ID: 15833276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential arginine residues in isoprenylcysteine protein carboxyl methyltransferase.
    Boivin D; Lin W; Béliveau R
    Biochem Cell Biol; 1997; 75(1):63-9. PubMed ID: 9192075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of arginine residues at the substrate binding site of yeast glutathione reductase.
    Pandey A; Iyengar L
    Indian J Biochem Biophys; 1998 Jun; 35(3):157-60. PubMed ID: 9803664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of lysine and arginine residues of bovine heart 2-oxoglutarate dehydrogenase: effect on the enzyme activity and regulation.
    Ostrovtsova SA
    Acta Biochim Pol; 1998; 45(4):1031-6. PubMed ID: 10397349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of adenylate kinase after modification of Arg-97 by phenylglyoxal.
    Berghäuser J; Schirmer RH
    Biochim Biophys Acta; 1978 Dec; 537(2):428-35. PubMed ID: 215219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of arginyl and lysyl residues of flavokinase from rat small intestine.
    Nakano H; McCormick DB
    Biochem Int; 1992 Nov; 28(3):441-50. PubMed ID: 1336380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical modification of arginine residues of protein kinase C.
    Lester DS
    Biochem Int; 1992 Jul; 27(3):439-47. PubMed ID: 1417881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of ribulosebisphosphate carboxylase by modification of arginyl residues with phenylglyoxal.
    Schloss JV; Norton IL; Stringer CD; Hartman FC
    Biochemistry; 1978 Dec; 17(26):5626-31. PubMed ID: 728421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reactive arginine in adenylate kinase.
    Berghäuser J
    Biochim Biophys Acta; 1975 Aug; 397(2):370-6. PubMed ID: 168924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction of phenylglyoxal and (p-hydroxyphenyl) glyoxal with arginines and cysteines in the alpha subunit of tryptophan synthase.
    Eun HM; Miles EW
    Biochemistry; 1984 Dec; 23(26):6484-91. PubMed ID: 6397226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of adenylate cyclase by phenylglyoxal and other dicarbonyls. Evidence for existence of essential arginyl residues.
    Franks DJ; Tunnicliff G; Ngo TT
    Biochim Biophys Acta; 1980 Feb; 611(2):358-62. PubMed ID: 7357013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Malebrán LP; Cardemil E
    Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An essential arginyl residue in yeast hexokinase.
    Philips M; Pho DB; Pradel LA
    Biochim Biophys Acta; 1979 Feb; 566(2):296-304. PubMed ID: 369611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efrapeptin prevents modification by phenylglyoxal of an essential arginyl residue in mitochondrial adenosine triphosphatase.
    Kohlbrenner WE; Cross RL
    J Biol Chem; 1978 Nov; 253(21):7609-11. PubMed ID: 151685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.