These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 5911279)

  • 1. The possible role of quinone methines in phosphorylation reactions in Rhodospirillum rubrum and liver mitochondria.
    Parson WW; Rudney H
    Biochemistry; 1966 Mar; 5(3):1013-8. PubMed ID: 5911279
    [No Abstract]   [Full Text] [Related]  

  • 2. Roles of ubiquinone-10 and rhodoquinone in photosynthetic formation of adenosine triphosphate by chromatophores from Rhodospirillum rubrum.
    Okayama S; Yamamoto N; Nishikawa K; Horio T
    J Biol Chem; 1968 Jun; 243(11):2995-9. PubMed ID: 5653187
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of aerobiosis and diphenylamine on the content of ubiquinone in Rhodospirillum rubrum. Biochim Biophys.
    SUGIMURA T
    Biochim Biophys Acta; 1962 Jul; 62():167-70. PubMed ID: 14042348
    [No Abstract]   [Full Text] [Related]  

  • 4. The stimulation of photophosphorylation by coenzyme Q2 and Q3 in chromatophores of Rhodospirillum rubrum.
    RUDNEY H
    J Biol Chem; 1961 Jul; 236():PC39-40. PubMed ID: 13744475
    [No Abstract]   [Full Text] [Related]  

  • 5. New multiprenylquinones in the biosynthesis of ubiquinone.
    Friis P; Nilsson JL; Daves GD; Folkers K
    Biochem Biophys Res Commun; 1967 Aug; 28(3):324-7. PubMed ID: 6055159
    [No Abstract]   [Full Text] [Related]  

  • 6. AN INTERMEDIATE IN THE CONVERSION OF P-HYDROXYBENZOATE-U-C-14 TO UBIQUINONE IN RHODOSPIRILLUM RUBRUM.
    PARSON WW; RUDNEY H
    Proc Natl Acad Sci U S A; 1965 Mar; 53(3):599-606. PubMed ID: 14338239
    [No Abstract]   [Full Text] [Related]  

  • 7. Low molecular weight analogs of coenzyme Q as hydrogen acceptors and donors in systems of the respiratory chain.
    Wan YP; Williams RH; Folkers K; Leung KH; Racker E
    Biochem Biophys Res Commun; 1975 Mar; 63(1):11-5. PubMed ID: 1125004
    [No Abstract]   [Full Text] [Related]  

  • 8. THE BIOSYNTHESIS OF UBIQUINONE AND RHODOQUINONE FROM P-HYDROXYBENZOATE AND P-HYDROXYBENZALDEHYDE IN RHODOSPIRILLUM RUBRUM.
    PARSON WW; RUDNEY H
    J Biol Chem; 1965 Apr; 240():1855-63. PubMed ID: 14285535
    [No Abstract]   [Full Text] [Related]  

  • 9. Proton translocation coupled to quinone reduction by reduced nicotinamide--adenine dinucleotide in rat liver and ox heart mitochondria.
    Lawford HG; Garland PB
    Biochem J; 1972 Dec; 130(4):1029-44. PubMed ID: 4144294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of photosynthetic, cyclic electron transport system from photoreaction unit, ubiquinone-10 protein, cytochrome c2 and polar lipids purified from Rhodospirillum rubrum.
    Matsuda H; Nishi N; Tsuji K; Tanaka K; Kakuno T; Yamashita J; Horio T
    J Biochem; 1984 Feb; 95(2):431-42. PubMed ID: 6325401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemical activities of K3Fe(CN)6-treated chromatophores from Rhodospirillum rubrum.
    Beugeling T
    Biochim Biophys Acta; 1968 Jan; 153(1):143-53. PubMed ID: 5638384
    [No Abstract]   [Full Text] [Related]  

  • 12. The function of ubiquinone-10 both in the electron transport system and in the energy conservation system of chromatophores from Rhodospirillum rubrum.
    Yamamoto N; Hatakeyama H; Nishikawa K; Horio T
    J Biochem; 1970 Apr; 67(4):587-98. PubMed ID: 5453049
    [No Abstract]   [Full Text] [Related]  

  • 13. Oxidative phosphorylation in Micrococcus denitrificans. IV. Further characterization of electron-transfer pathway and phosphorylation activity in NADH oxidation.
    Imai K; Asano A; Sato R
    J Biochem; 1968 Feb; 63(2):207-18. PubMed ID: 4299376
    [No Abstract]   [Full Text] [Related]  

  • 14. The use of mutants of Escherichia coli K12 in studying electron transport and oxidative phosphorylation.
    Gibson F; Cox GB
    Essays Biochem; 1973; 9():1-29. PubMed ID: 4149255
    [No Abstract]   [Full Text] [Related]  

  • 15. Mitochondrial oxidative phosphorylation is defective in the long-lived mutant clk-1.
    Kayser EB; Sedensky MM; Morgan PG; Hoppel CL
    J Biol Chem; 2004 Dec; 279(52):54479-86. PubMed ID: 15269213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phosphorylation potential generated by respiring mitochondria.
    Slater EC; Rosing J; Mol A
    Biochim Biophys Acta; 1973 Apr; 292(3):534-53. PubMed ID: 4705444
    [No Abstract]   [Full Text] [Related]  

  • 17. The requirement of ubiquinone-10 for an ATP-forming system and an ATPase system of chromatophores from Rhodospirillum rubrum.
    Horio T; Nishikawa K; Okayama S; Horiuti Y; Yamamoto N
    Biochim Biophys Acta; 1968 May; 153(4):913-6. PubMed ID: 5660398
    [No Abstract]   [Full Text] [Related]  

  • 18. Relationship between photosynthetic and oxidative phosphorylations in chromatophores from light-grown cells of Rhodospirillum rubrum.
    Yamashita J; Yoshimura S; Matuo Y; Horio T
    Biochim Biophys Acta; 1967 Jul; 143(1):154-72. PubMed ID: 4292784
    [No Abstract]   [Full Text] [Related]  

  • 19. Observations on distribution of NADH oxidase in particles from dark-grown and light-grown Rhodospirillum rubrum.
    Yamashita J; Kamen MD
    Biochem Biophys Res Commun; 1969 Feb; 34(4):418-25. PubMed ID: 4304836
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of quinones in the mitochondrial electron transport system.
    Ziegler DM
    Am J Clin Nutr; 1961; 9(4):43-9. PubMed ID: 13788420
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.