BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 5912367)

  • 1. Changes in phosphate compounds during the development and maintenance of rigor mortis.
    Nauss KM; Davies RE
    J Biol Chem; 1966 Jun; 241(12):2918-22. PubMed ID: 5912367
    [No Abstract]   [Full Text] [Related]  

  • 2. [Metabolism of phosphorus esters in the Rana temporaria sartorius treated with a hypertonic Ringer solution].
    Daemers-Lambert C; Debrun FM; Dethier G; Manil J
    Arch Int Physiol Biochim; 1966 Jun; 74(3):374-96. PubMed ID: 4162220
    [No Abstract]   [Full Text] [Related]  

  • 3. The exchange of 18O between water and phosphate compounds in isolated frog sartorius muscle under conditions of negative work.
    Maréchal G; Mommaerts WF; Seraydarian K
    J Mechanochem Cell Motil; 1974; 3(1):39-54. PubMed ID: 4457580
    [No Abstract]   [Full Text] [Related]  

  • 4. Correlations of ATP content with mechanical properties of metabolically inhibited muscle.
    Murphy RA
    Am J Physiol; 1966 Nov; 211(5):1082-8. PubMed ID: 5924029
    [No Abstract]   [Full Text] [Related]  

  • 5. Possible role in contraction of structurally bound phosphate of muscle.
    Cheesman DF; Whitehead A
    Nature; 1969 Feb; 221(5182):736-9. PubMed ID: 5766643
    [No Abstract]   [Full Text] [Related]  

  • 6. The break-down of adenosine triphosphate in the contraction cycle of the frog sartorius muscle.
    Mommaerts WF; Wallner A
    J Physiol; 1967 Nov; 193(2):343-57. PubMed ID: 6065882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy balance in DNFB-treated and untreated frog muscle.
    Curtin NA; Woledge RC
    J Physiol; 1975 Apr; 246(3):737-52. PubMed ID: 1079537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of phosphate compounds in thaw contraction and the mechanism of thaw rigor.
    Kushmerick MJ; Davies RE
    Biochim Biophys Acta; 1968 Jan; 153(1):279-87. PubMed ID: 5638396
    [No Abstract]   [Full Text] [Related]  

  • 9. Phosphate uptake into organic compounds in skeletal muscle.
    Dunkley CR; Manery JF
    Can J Physiol Pharmacol; 1975 Apr; 53(2):317-20. PubMed ID: 1137827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of 2,4-dinitrofluorobenzene on the activity of striated muscle.
    Infante AA; Davies RE
    J Biol Chem; 1965 Oct; 240(10):3996-4001. PubMed ID: 5843072
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of adrenaline on the carbohydrate metabolism in striated muscle.
    Beviz A; Mohme-Lundholm E
    Acta Physiol Scand; 1967 Mar; 69(3):213-7. PubMed ID: 6034291
    [No Abstract]   [Full Text] [Related]  

  • 12. LENGTH, TENSION AND METABOLISM DURING SHORT ISOMETRIC CONTRACTIONS OF FROG SARTORIUS MUSCLES.
    INFANTE AA; KLAUPIKS D; DAVIES RE
    Biochim Biophys Acta; 1964 Jul; 88():215-7. PubMed ID: 14203153
    [No Abstract]   [Full Text] [Related]  

  • 13. High energy phosphate resynthesis from anaerobic glycolysis in muscle.
    Cerretelli P; Di Prampero PE
    J Physiol; 1969 Oct; 204(2):115P+. PubMed ID: 5824622
    [No Abstract]   [Full Text] [Related]  

  • 14. [The yield of resynthesis of high-energy phosphates (ATP + PC) in the course of anaerobic restoration].
    Ambrosoli G; Cerretelli P
    Boll Soc Ital Biol Sper; 1970 Aug; 46(15):667-8. PubMed ID: 5503228
    [No Abstract]   [Full Text] [Related]  

  • 15. [Temporal evolution of phosphocreatine hydrolysis and hexosediphosphate synthesis during and after 5 simple contractions, at 0 degrees C, in the sartorius of Rana temporaria, poisoned with monoiodoacetic acid].
    Spronck AC
    Arch Int Physiol Biochim; 1965 Mar; 73(2):241-59. PubMed ID: 4158088
    [No Abstract]   [Full Text] [Related]  

  • 16. In vivo regulation of rat muscle glycogen synthetase activity.
    Piras R; Staneloni R
    Biochemistry; 1969 May; 8(5):2153-60. PubMed ID: 5785234
    [No Abstract]   [Full Text] [Related]  

  • 17. The shortening of rabbit muscles during rigor mortis; its relation to the breakdown of adenosine triphosphate and creatine phosphate and to muscular contraction.
    BENDALL JR
    J Physiol; 1951 Jun; 114(1-2):71-88. PubMed ID: 14861784
    [No Abstract]   [Full Text] [Related]  

  • 18. Energetics of twitch and tetanus in the frog gastrocnemius.
    Ambrosoli G; Cananau S; Cerretelli P
    Arch Fisiol; 1973 Jun; 70(1-2):9-11. PubMed ID: 4802463
    [No Abstract]   [Full Text] [Related]  

  • 19. Similarity of the rigor mortis process in normal and germ-free rats.
    Forrest J; Kastenschmidt LL; Greaser ML; Sair RA; Cassens RG; Hoekstra WG; Briskey EJ
    Nature; 1967 Apr; 214(5087):507. PubMed ID: 6032885
    [No Abstract]   [Full Text] [Related]  

  • 20. Incorporation of inorganic phosphate into ATP and phosphorylcreatine of stretched muscle, measured by 18-O tracer.
    Maréchal G; Mommaerts WF; Seraydarian K
    J Physiol; 1971; 214 Suppl():40P-41P. PubMed ID: 5575371
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.