BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 5915038)

  • 1. [Nutritional repercussions of soluble products formed during the Maillard reaction].
    Adrian J; Frangne R; Petit L; Godon B; Barbier J
    Ann Nutr Aliment; 1966; 20(3):257-77. PubMed ID: 5915038
    [No Abstract]   [Full Text] [Related]  

  • 2. Determination of the molecular weight distribution of non-enzymatic browning products formed by roasting of glucose and glycine and studies on their effects on NADPH-cytochrome c-reductase and glutathione-S-transferase in Caco-2 cells.
    Hofmann T; Ames J; Krome K; Faist V
    Nahrung; 2001 Jun; 45(3):189-94. PubMed ID: 11455786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic transit of early and advanced Maillard products.
    Finot PA; Magnenat E
    Prog Food Nutr Sci; 1981; 5(1-6):193-207. PubMed ID: 6798629
    [No Abstract]   [Full Text] [Related]  

  • 4. [Maillard reaction. 8. Role of premelanoids in nitrogen metabolism in vivo and proteolysis in vitro].
    Adrian J; Frangne R
    Ann Nutr Aliment; 1973; 27(3):111-23. PubMed ID: 4588096
    [No Abstract]   [Full Text] [Related]  

  • 5. Maillard reaction products inhibit oxidation of human low-density lipoproteins in vitro.
    Dittrich R; El-Massry F; Kunz K; Rinaldi F; Peich CC; Beckmann MW; Pischetsrieder M
    J Agric Food Chem; 2003 Jun; 51(13):3900-4. PubMed ID: 12797763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave sterilization of growth medium alleviates inhibition of Aggregatibacter actinomycetemcomitans by Maillard reaction products.
    Bhattacharjee MK; Sugawara K; Ayandeji OT
    J Microbiol Methods; 2009 Aug; 78(2):227-30. PubMed ID: 19524624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative effects of glucose-lysine versus glucose-methionine Maillard reaction products consumption: in vitro and in vivo calcium availability.
    Delgado-Andrade C; Seiquer I; Navarro MP
    Mol Nutr Food Res; 2005 Jul; 49(7):679-84. PubMed ID: 15786517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal decomposition of specifically phosphorylated D-glucoses and their role in the control of the Maillard reaction.
    Yaylayan VA; Machiels D; Istasse L
    J Agric Food Chem; 2003 May; 51(11):3358-66. PubMed ID: 12744667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digestion and absorption of precooked frozen protein foods-1). Effect of presence of absence of polysaccharides.
    di Stefano CM; Ruggiero M; Marassi M; Morelli S; Monaco A; Tutino A
    Boll Soc Ital Biol Sper; 1980 Dec; 56(24):2646-52. PubMed ID: 7470314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity of epicatechin in aqueous glycine and glucose maillard reaction models: quenching of C2, C3, and C4 sugar fragments.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2005 May; 53(10):4130-5. PubMed ID: 15884850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of glucose in the maillard browning of maltose and glycine: a radiochemical approach.
    Mundt S; Wedzicha BL
    J Agric Food Chem; 2005 Aug; 53(17):6798-803. PubMed ID: 16104802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and metabolism studies with fructose amino acids.
    Erbersdobler HF; Brandt A; Scharrer E; Von Wangenheim B
    Prog Food Nutr Sci; 1981; 5(1-6):257-63. PubMed ID: 6798632
    [No Abstract]   [Full Text] [Related]  

  • 13. Maillard reaction VII--Browning of glucose with lysine, glycine and glutamic acid.
    de Figueiredo Toledo MC; Bobbio PA
    An Acad Bras Cienc; 1981 Dec; 53(4):707-12. PubMed ID: 6808881
    [No Abstract]   [Full Text] [Related]  

  • 14. Characterization of model melanoidins by the thermal degradation profile.
    Adams A; Abbaspour Tehrani K; Kersiene M; Venskutonis R; De Kimpe N
    J Agric Food Chem; 2003 Jul; 51(15):4338-43. PubMed ID: 12848507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose-dependent utilisation of casein-linked lysinoalanine, N(epsilon)-fructoselysine and N(epsilon)-carboxymethyllysine in rats.
    Somoza V; Wenzel E; Weiss C; Clawin-Rädecker I; Grübel N; Erbersdobler HF
    Mol Nutr Food Res; 2006 Sep; 50(9):833-41. PubMed ID: 16917812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a new Maillard type reaction product generated by heating 1-deoxymaltulosyl-glycine in the presence of cysteine.
    Ota M; Kohmura M; Kawaguchi H
    J Agric Food Chem; 2006 Jul; 54(14):5127-31. PubMed ID: 16819926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of formation of redox-active hydroxylated benzenes and pyrazine in 13C-labeled glycine/D-glucose model systems.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2005 Dec; 53(25):9742-6. PubMed ID: 16332124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of reaction conditions on the origin and yields of acetic acid generated by the maillard reaction.
    Davidek T; Devaud S; Robert F; Blank I
    Ann N Y Acad Sci; 2005 Jun; 1043():73-9. PubMed ID: 16037224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study of glucose tolerance in the growing male rat. Variations as a function of age and type of protein in the diet (casein or soy flour) with or without excess dl-methionine].
    Bourdel G; Robin P; Forestier M; Robin D
    Arch Sci Physiol (Paris); 1967; 21(1):1-25. PubMed ID: 6070031
    [No Abstract]   [Full Text] [Related]  

  • 20. A kinetic model for the glucose-fructose-glycine browning reaction.
    Mundt S; Wedzicha BL
    J Agric Food Chem; 2003 Jun; 51(12):3651-5. PubMed ID: 12769540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.