These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 5915414)

  • 1. Development and dosimetry of an "epithermal" neutron beam for possible use in neutron capture therapy. II. Absorbed dose measurements in a phantom man.
    Fairchild RG; Goodman LJ
    Phys Med Biol; 1966 Jan; 11(1):15-30. PubMed ID: 5915414
    [No Abstract]   [Full Text] [Related]  

  • 2. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700.
    Gambarini G; Magni D; Regazzoni V; Borroni M; Carrara M; Pignoli E; Burian J; Marek M; Klupak V; Viererbl L
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):422-7. PubMed ID: 24435913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the epithermal neutron beam used for boron neutron capture therapy.
    Liu HB; Brugger RM; Greenberg DD; Rorer DC; Hu JP; Hauptman HM
    Int J Radiat Oncol Biol Phys; 1994 Mar; 28(5):1149-56. PubMed ID: 8175400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor.
    Rogus RD; Harling OK; Yanch JC
    Med Phys; 1994 Oct; 21(10):1611-25. PubMed ID: 7869994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport calculations of depth-dose distributions for gadolinium neutron capture therapy.
    Matsumoto T
    Phys Med Biol; 1992 Jan; 37(1):155-62. PubMed ID: 1741420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neutron sensitivity of dosimeters applied to boron neutron capture therapy.
    Raaijmakers CP; Watkins PR; Nottelman EL; Verhagen HW; Jansen JT; Zoetelief J; Mijnheer BJ
    Med Phys; 1996 Sep; 23(9):1581-9. PubMed ID: 8892256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2015 Feb; 96():45-51. PubMed ID: 25479433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose monitoring for boron neutron capture therapy using a reactor-based epithermal neutron beam.
    Raaijmakers CP; Nottelman EL; Konijnenberg MW; Mijnheer BJ
    Phys Med Biol; 1996 Dec; 41(12):2789-97. PubMed ID: 8971969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.
    Yanch JC; Harling OK
    Radiat Res; 1993 Aug; 135(2):131-45. PubMed ID: 8367586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reference dosimetry at the neutron capture therapy facility at Studsvik.
    Munck af Rosenschöld PM; Giusti V; Ceberg CP; Capala J; Sköld K; Persson BR
    Med Phys; 2003 Jul; 30(7):1569-79. PubMed ID: 12906175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical dosimetry of an epithermal neutron beam for neutron capture therapy: dose distributions under reference conditions.
    Raaijmakers CP; Konijnenberg MW; Mijnheer BJ
    Int J Radiat Oncol Biol Phys; 1997 Mar; 37(4):941-51. PubMed ID: 9128973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of an iron-filtered epithermal neutron beam for neutron-capture therapy.
    Musolino SV; McGinley PH; Greenwood RC; Kliauga P; Fairchild RG
    Med Phys; 1991; 18(4):806-16. PubMed ID: 1656179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dose planning with comparison to in vivo dosimetry for epithermal neutron irradiation of the dog brain.
    Seppälä T; Auterinen I; Aschan C; Serén T; Benczik J; Snellman M; Huiskamp R; Ramadan UA; Kankaanranta L; Joensuu H; Savolainen S
    Med Phys; 2002 Nov; 29(11):2629-40. PubMed ID: 12462730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of measured parameters from a 24-keV and a broad spectrum epithermal neutron beam for neutron capture therapy: an identification of consequential parameters.
    Fairchild RG; Saraf SK; Kalef-Ezra J; Laster BH
    Med Phys; 1990; 17(6):1045-52. PubMed ID: 2280734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A prototype epithermal neutron beam for boron neutron capture therapy.
    Noonan DJ; Russell JL; Brugger RM
    Med Phys; 1986; 13(2):211-6. PubMed ID: 3010065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational study into the use of polyacrylamide gel and A-150 plastic as brain tissue substitutes for boron neutron capture therapy.
    Wojnecki C; Green S
    Phys Med Biol; 2001 May; 46(5):1399-405. PubMed ID: 11384061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance characteristics of the MIT fission converter based epithermal neutron beam.
    Riley KJ; Binns PJ; Harling OK
    Phys Med Biol; 2003 Apr; 48(7):943-58. PubMed ID: 12701897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A small-scale neutron dosimetry intercomparison between Essen, Amsterdam and Edinburgh.
    Williams JR; Mijnheer BJ; Rassow J; Meissner P; Hensley F
    Strahlentherapie; 1981 Apr; 157(4):245-50. PubMed ID: 7245265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dosimetry of clinical neutron and proton beams: an overview of recommendations.
    Vynckier S; ;
    Radiat Prot Dosimetry; 2004; 110(1-4):565-72. PubMed ID: 15353710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.