These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 5916385)

  • 1. The effect of malate and other dicarboxylic acids on mitochondrial isocitrate metabolism.
    Ferguson SM; Williams GR
    J Biol Chem; 1966 Aug; 241(16):3696-700. PubMed ID: 5916385
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of exercise on oxidative activities in rat liver mitochondria.
    Glick JL
    Am J Physiol; 1966 Jun; 210(6):1215-21. PubMed ID: 5947980
    [No Abstract]   [Full Text] [Related]  

  • 3. [Oxidation of Krebs cycle substrates by Eurytrema pancreaticum mitochondria].
    Shestak EA
    Parazitologiia; 1977; 11(5):412-6. PubMed ID: 909726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The inhibition of malate, tricarboxylate and oxoglutarate entry into mitochondria by 2-n-butylmalonate.
    Robinson BH; Chappell JB
    Biochem Biophys Res Commun; 1967 Jul; 28(2):249-55. PubMed ID: 4382426
    [No Abstract]   [Full Text] [Related]  

  • 5. Oxidation rates of Krebs cycle carboxylic acids by the mitochondria of hypotonically treated rabbit epididymal spermatozoa.
    Keyhani E; Storey BT
    Fertil Steril; 1973 Nov; 24(11):864-71. PubMed ID: 4742007
    [No Abstract]   [Full Text] [Related]  

  • 6. [The role of malate in regulating the rate of mitochondrial respiration in vitro].
    Vovyleva-Guarriero VB; Wehbie RS; Muscatello U; Lardi GA
    Biokhimiia; 1991 Mar; 56(3):542-51. PubMed ID: 1883909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of phenothiazone on the metabolism of liver mitochondria.
    Gallagher CH; Koch JH; Mann DM
    Biochem Pharmacol; 1965 May; 14(5):799-811. PubMed ID: 4284644
    [No Abstract]   [Full Text] [Related]  

  • 8. Evaluation of ischemic damage to rat liver mitochondria using the Krebs-cycle.
    Daniel AM; Beaudoin JG
    J Surg Res; 1974 Sep; 17(3):204-9. PubMed ID: 4413310
    [No Abstract]   [Full Text] [Related]  

  • 9. Control of citric acid cycle activity in rat heart mitochondria.
    LaNoue K; Nicklas WJ; Williamson JR
    J Biol Chem; 1970 Jan; 245(1):102-11. PubMed ID: 4312474
    [No Abstract]   [Full Text] [Related]  

  • 10. Stimulation of citrate oxidation and transport in human placental mitochondria by L-malate.
    Swierczyński J; Scislowski P; Aleksandrowicz Z; Zelewski L
    Acta Biochim Pol; 1976; 23(2-3):93-102. PubMed ID: 970039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ferricyanide and fumarate-reducing enzymes in the mitochondria of helminths].
    Benediktov II
    Angew Parasitol; 1972 Feb; 13(1):28-35. PubMed ID: 5053174
    [No Abstract]   [Full Text] [Related]  

  • 12. [Effect of the oxidation of glycine and Krebs cycle substrates on cytochrome activity and alternative pathways of mitochondria from leaves of Pisum sativum L].
    Azcón-Bieto J
    Rev Esp Fisiol; 1986 Mar; 42(1):91-7. PubMed ID: 3715159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of progesterone biosynthesis in human placental mitochondria by Krebs cycle metabolites.
    Klimek J; Boguslawski W; Tialowska B; Zelewski L
    Acta Biochim Pol; 1976; 23(2-3):185-92. PubMed ID: 970033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrelationships between malate-aspartate shuttle and citric acid cycle in rat heart mitochondria.
    LaNoue KF; Williamson JR
    Metabolism; 1971 Feb; 20(2):119-40. PubMed ID: 4322086
    [No Abstract]   [Full Text] [Related]  

  • 15. Krebs cycle acid excretion with isotopic split renal function techniques.
    Runeberg L; Lotspeich WD
    Am J Physiol; 1966 Aug; 211(2):467-75. PubMed ID: 5921109
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of hexokinase and tricarboxylic acid-cycle intermediates on fatty acid oxidation and formation of ketone bodies by rat-liver mitochondria.
    Hird FJ; Symons RH; Weidemann MJ
    Biochem J; 1966 Feb; 98(2):389-93. PubMed ID: 5944642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of changes in brain metabolism on the levels of citric acid cycle intermediates.
    Goldberg ND; Passonneau JV; Lowry OH
    J Biol Chem; 1966 Sep; 241(17):3997-4003. PubMed ID: 5922095
    [No Abstract]   [Full Text] [Related]  

  • 18. CO2 fixation in the nervous system.
    Waelsch H; Cheng SC; Côté LJ; Naruse H
    Proc Natl Acad Sci U S A; 1965 Oct; 54(4):1249-53. PubMed ID: 5219830
    [No Abstract]   [Full Text] [Related]  

  • 19. Modulation of mitochondrial adenylate kinase by citric-acid-cycle intermediates.
    Pradhan TK; Criss WE
    Eur J Biochem; 1974 Apr; 43(3):541-7. PubMed ID: 4364860
    [No Abstract]   [Full Text] [Related]  

  • 20. Transport of dicarboxylic acids in Bacillus subtilis. Inducible uptake of L-malate.
    Fournier RE; McKillen MN; Pardee AB; Willecke K
    J Biol Chem; 1972 Sep; 247(17):5587-95. PubMed ID: 4626722
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.