These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 5920198)

  • 21. The effects of high hydrostatic pressure on microfilaments and microtubules in Xenopus laevis.
    Messier PE; Seguin C
    J Embryol Exp Morphol; 1978 Apr; 44():281-95. PubMed ID: 565800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista.
    Cavalier-Smith T; Chao EE; Lewis R
    Mol Phylogenet Evol; 2015 Dec; 93():331-62. PubMed ID: 26234272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The role of microtubules in the cytoplasmic streaming of axopodia].
    Cachol J; Cachon M; Grassé MP
    C R Acad Hebd Seances Acad Sci D; 1975 May; 280(20):2341-3. PubMed ID: 807420
    [No Abstract]   [Full Text] [Related]  

  • 24. Unidirectional motility occurring in association with the axopodial membrane of Echinosphaerium nucleofilum.
    Bloodgood RA
    Cell Biol Int Rep; 1978 Mar; 2(2):171-6. PubMed ID: 667960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactivation of Ca2+-dependent cytoplasmic contraction in permeabilized cell models of the heliozoon Echinosphaerium akamae.
    Arikawa M; Suzaki T
    Cell Motil Cytoskeleton; 2002 Dec; 53(4):267-72. PubMed ID: 12378536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degrading and stabilizing effects of Mg2+ ions on microtubule-containing axopodia.
    Shigenaka Y; Watanabe K; Kaneda M
    Exp Cell Res; 1974 Apr; 85(2):391-8. PubMed ID: 4597337
    [No Abstract]   [Full Text] [Related]  

  • 27. How microtubule patterns are generated. The relative importance of nucleation and bridging of microtubules in the formation of the axoneme of Raphidiophrys.
    Tilney LG
    J Cell Biol; 1971 Dec; 51(3):837-54. PubMed ID: 5128354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microtubule dissassembly in vivo: intercalary destabilization and breakdown of microtubules in the heliozoan Actinocoryne contractilis.
    Febvre-Chevalier C; Febvre J
    J Cell Biol; 1992 Aug; 118(3):585-94. PubMed ID: 1639845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pressure-induced depolymerization of spindle microtubules. III. Differential stability in HeLa cells.
    Salmon ED; Goode D; Maugel TK; Bonar DB
    J Cell Biol; 1976 May; 69(2):443-54. PubMed ID: 1262399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and properties of the axopodial cytoskeleton of a heliozoan, Echinosphaerium akamae.
    Sugiyama M; Ikegawa S; Masuyama E; Suzaki T; Ishida M; Shigenaka Y
    Eur J Protistol; 1992 May; 28(2):214-9. PubMed ID: 23195106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilizing effects of D2O on the microtubular components and needle-like form of heliozoan axopods: a pressure-temperature analysis.
    Marsland D; Tilney LG; Hirshfield M
    J Cell Physiol; 1971 Apr; 77(2):187-94. PubMed ID: 4929376
    [No Abstract]   [Full Text] [Related]  

  • 32. Dynamic shape changes of cytoplasmic organelles translocating along microtubules.
    Kachar B; Bridgman PC; Reese TS
    J Cell Biol; 1987 Sep; 105(3):1267-71. PubMed ID: 3654751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does Formation of Multicellular Colonies by Choanoflagellates Affect Their Susceptibility to Capture by Passive Protozoan Predators?
    Kumler WE; Jorge J; Kim PM; Iftekhar N; Koehl MAR
    J Eukaryot Microbiol; 2020 Sep; 67(5):555-565. PubMed ID: 32455487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microheliella maris (Microhelida ord. n.), an ultrastructurally highly distinctive new axopodial protist species and genus, and the unity of phylum Heliozoa.
    Yabuki A; Chao EE; Ishida K; Cavalier-Smith T
    Protist; 2012 May; 163(3):356-88. PubMed ID: 22153838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Axopodial degradation in the heliozoon Raphidiophrys contractilis: a novel bioassay system for detecting heavy metal toxicity in an aquatic environment.
    Khan SM; Yoshimura C; Arikawa M; Omura G; Nishiyama S; Suetomo Y; Kakuta S; Suzaki T
    Environ Sci; 2006; 13(4):193-200. PubMed ID: 17095991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The axostyle of Saccinobaculus. II. Motion of the microtubule bundle and a structural comparison of straight and bent axostyles.
    McIntosh JR
    J Cell Biol; 1973 Feb; 56(2):324-39. PubMed ID: 4566523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron microscopical investigations on surface-related structures in Allogromia (Protozoa: Foraminiferida).
    Pierce S; Nathanson ME
    Trans Am Microsc Soc; 1974 Apr; 93(2):170-9. PubMed ID: 4833447
    [No Abstract]   [Full Text] [Related]  

  • 38. Fine structure of cell division in Chlamydomonas reinhardi. Basal bodies and microtubules.
    Johnson UG; Porter KR
    J Cell Biol; 1968 Aug; 38(2):403-25. PubMed ID: 5664210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extracellular microtubules. The origin, structure, and attachment of flagellar hairs in Fucus and Ascophyllum antherozoids.
    Bouck GB
    J Cell Biol; 1969 Feb; 40(2):446-60. PubMed ID: 5812471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrastructure of an unusual contractile vacuole in several chrysomonad phytoflagellates.
    Aaronson S; Behrens U
    J Cell Sci; 1974 Jan; 14(1):1-9. PubMed ID: 4816641
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.