These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 5922537)

  • 1. Bacterial growth on aminoalkylphosphonic acids.
    Harkness DR
    J Bacteriol; 1966 Sep; 92(3):623-7. PubMed ID: 5922537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphonate utilization by bacteria.
    Cook AM; Daughton CG; Alexander M
    J Bacteriol; 1978 Jan; 133(1):85-90. PubMed ID: 618850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphonopyruvic acid: A probable precursor of phosphonic acids in cell-free preparation of Tetrahymena.
    Horiguchi M; Rosenberg H
    Biochim Biophys Acta; 1975 Oct; 404(2):333-40. PubMed ID: 170979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphonate utilization by bacterial cultures and enrichments from environmental samples.
    Schowanek D; Verstraete W
    Appl Environ Microbiol; 1990 Apr; 56(4):895-903. PubMed ID: 2339877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DISTRIBUTION AND FATE OF 2-AMINOETHYLPHOSPHONIC ACID IN TETRAHYMENA.
    ROSENBERG H
    Nature; 1964 Jul; 203():299-300. PubMed ID: 14201767
    [No Abstract]   [Full Text] [Related]  

  • 6. Transamination of aminoalkylphosphonic acids with alpha ketoglutarate.
    Roberts E; Simonsen DG; Horiguchi M; Kittredge JS
    Science; 1968 Feb; 159(3817):886-8. PubMed ID: 17768980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules.
    McGrath JW; Chin JP; Quinn JP
    Nat Rev Microbiol; 2013 Jun; 11(6):412-9. PubMed ID: 23624813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. INFLUENCE OF DEOXYRIBONUCLEIC ACID DEGRADATION PRODUCTS AND ORTHOPHOSPHATE ON DEOXYNUCLEOTIDE KINASE ACTIVITY AND DEOXYRIBONUCLEIC ACID SYNTHESIS IN PNEUMOCOCCUS TYPE 3.
    FIRSHEIN W
    J Bacteriol; 1965 Aug; 90(2):327-36. PubMed ID: 14329443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial oxidation of orthophosphate.
    Malacinski G; Konetzka WA
    J Bacteriol; 1966 Feb; 91(2):578-82. PubMed ID: 4956755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The identification of 2-phosphonoacetaldehyde as an intermediate in the degradation of 2-aminoethylphosphonate by Bacillus cereus.
    La Nauze JM; Rosenberg H
    Biochim Biophys Acta; 1968 Oct; 165(3):438-47. PubMed ID: 4982500
    [No Abstract]   [Full Text] [Related]  

  • 11. Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B.
    Chen CM; Ye QZ; Zhu ZM; Wanner BL; Walsh CT
    J Biol Chem; 1990 Mar; 265(8):4461-71. PubMed ID: 2155230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The metabolism of phosphonates by microorganisms. The transport of aminoethylphosphonic acid in Bacillus cereus.
    Rosenberg H; La Nauze JM
    Biochim Biophys Acta; 1967 Jun; 141(1):79-90. PubMed ID: 4963810
    [No Abstract]   [Full Text] [Related]  

  • 13. LETHALITY OF STREPTOMYCIN FOR ALKALINE PHOSPHATASE CONSTITUTIVE ESCHERICHIA COLI.
    ROSENKRANZ HS; CARR HS
    J Bacteriol; 1963 Apr; 85(4):751-3. PubMed ID: 14044939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of different dissolved organic phosphorus sources by Symbiodinium voratum in vitro.
    Tian-Tian L; Ping H; Jia-Xing L; Zhi-Xin K; Ye-Hui T
    FEMS Microbiol Ecol; 2019 Nov; 95(11):. PubMed ID: 31580458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate-independent expression of the carbon-phosphorus lyase activity of Escherichia coli.
    Yakovleva GM; Kim SK; Wanner BL
    Appl Microbiol Biotechnol; 1998 May; 49(5):573-8. PubMed ID: 9650256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Inhibition of decarboxylation in vitro of phosphatidylserine by 2-aminoethylphosphonic acid].
    Maget-Dana R; Douste-Blazy L
    Experientia; 1971 Sep; 27(9):1019-20. PubMed ID: 5116119
    [No Abstract]   [Full Text] [Related]  

  • 17. The Abc of Phosphonate Breakdown: A Mechanism for Bacterial Survival.
    Manav MC; Sofos N; Hove-Jensen B; Brodersen DE
    Bioessays; 2018 Nov; 40(11):e1800091. PubMed ID: 30198068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-Phosphorus Lyase-the State of the Art.
    Stosiek N; Talma M; Klimek-Ochab M
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1525-1552. PubMed ID: 31792787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for phosphonate usage in the coral holobiont.
    Thomas S; Burdett H; Temperton B; Wick R; Snelling D; McGrath JW; Quinn JP; Munn C; Gilbert JA
    ISME J; 2010 Mar; 4(3):459-61. PubMed ID: 19956272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphonoacetate biosynthesis: in vitro detection of a novel NADP(+)-dependent phosphonoacetaldehyde-oxidizing activity in cell-extracts of the marine Roseovarius nubinhibens ISM.
    Cooley NA; Kulakova AN; Villarreal-Chiu JF; Gilbert JA; McGrath JW; Quinn JP
    Mikrobiologiia; 2011; 80(3):329-34. PubMed ID: 21861368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.