These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 5922537)

  • 21. Phosphonates and their degradation by microorganisms.
    Kononova SV; Nesmeyanova MA
    Biochemistry (Mosc); 2002 Feb; 67(2):184-95. PubMed ID: 11952414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial carbon-phosphorus lyase: products, rates, and regulation of phosphonic and phosphinic acid metabolism.
    Wackett LP; Shames SL; Venditti CP; Walsh CT
    J Bacteriol; 1987 Feb; 169(2):710-7. PubMed ID: 3804975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphonate utilization by bacteria in the presence of alternative phosphorus sources.
    Schowanek D; Verstraete W
    Biodegradation; 1990; 1(1):43-53. PubMed ID: 1368141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of a New, Recurrent Enzyme in Bacterial Phosphonate Degradation: (
    Zangelmi E; Stanković T; Malatesta M; Acquotti D; Pallitsch K; Peracchi A
    Biochemistry; 2021 Apr; 60(15):1214-1225. PubMed ID: 33830741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The predominance of nucleotidyl activation in bacterial phosphonate biosynthesis.
    Rice K; Batul K; Whiteside J; Kelso J; Papinski M; Schmidt E; Pratasouskaya A; Wang D; Sullivan R; Bartlett C; Weadge JT; Van der Kamp MW; Moreno-Hagelsieb G; Suits MD; Horsman GP
    Nat Commun; 2019 Aug; 10(1):3698. PubMed ID: 31420548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds.
    Krzyśko-Lupicka T; Strof W; Kubś K; Skorupa M; Wieczorek P; Lejczak B; Kafarski P
    Appl Microbiol Biotechnol; 1997 Oct; 48(4):549-52. PubMed ID: 9390463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Research on the catabolism of phosphonic acids: biodegradation of the C-P bond by Pseudomonas aeruginosa].
    Cassaigne A; Lacoste AM; Neuzil E
    C R Acad Hebd Seances Acad Sci D; 1976 May; 282(17):1637-9. PubMed ID: 820467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. THE ENZYMATIC CONDENSATION OF OLIGODEOXYRIBONUCLEOTIDES WITH POLYDEOXYRIBONUCLEOTIDES.
    MEAD CG
    Proc Natl Acad Sci U S A; 1964 Dec; 52(6):1482-8. PubMed ID: 14243522
    [No Abstract]   [Full Text] [Related]  

  • 29. The interaction of transfer factor G, ribosomes, and guanosine nucleotides in the presence of fusidic acid.
    Brot N; Spears C; Weissbach H
    Arch Biochem Biophys; 1971 Mar; 143(1):286-96. PubMed ID: 4934881
    [No Abstract]   [Full Text] [Related]  

  • 30. The enzymatic conversion of phosphonates to phosphate by bacteria.
    Kamat SS; Raushel FM
    Curr Opin Chem Biol; 2013 Aug; 17(4):589-96. PubMed ID: 23830682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Kinetic study of the mechanism of catalytic action of Escherichia coli alkaline phosphatase].
    Lazdunski C; Lazdunski M
    Biochim Biophys Acta; 1966 Mar; 113(3):551-66. PubMed ID: 5330953
    [No Abstract]   [Full Text] [Related]  

  • 32. Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp.
    Ermakova IT; Shushkova TV; Sviridov AV; Zelenkova NF; Vinokurova NG; Baskunov BP; Leontievsky AA
    Arch Microbiol; 2017 Jul; 199(5):665-675. PubMed ID: 28184965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular phosphatases of Chlamydomonas reinhardi and their regulation.
    Patni NJ; Dhawale SW; Aaronson S
    J Bacteriol; 1977 Apr; 130(1):205-11. PubMed ID: 15977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A DEOXYRIBONUCLEIC ACID PHOSPHATASE-EXONUCLEASE FROM ESCHERICHIA COLI. I. PURIFICATION OF THE ENZYME AND CHARACTERIZATION OF THE PHOSPHATASE ACTIVITY.
    RICHARDSON CC; KORNBERG A
    J Biol Chem; 1964 Jan; 239():242-50. PubMed ID: 14114850
    [No Abstract]   [Full Text] [Related]  

  • 35. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation.
    Willsky GR; Bennett RL; Malamy MH
    J Bacteriol; 1973 Feb; 113(2):529-39. PubMed ID: 4570598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whole-Cell Detection of C-P Bonds in Bacteria.
    Bartlett C; Bansal S; Burnett A; Suits MD; Schaefer J; Cegelski L; Horsman GP; Weadge JT
    Biochemistry; 2017 Nov; 56(44):5870-5873. PubMed ID: 29068202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the distribution and biosynthesis of 2-aminoethylphosphonate in two terrestrial molluscs.
    Liang CR; Rosenberg H
    Comp Biochem Physiol; 1968 May; 25(2):673-81. PubMed ID: 5653721
    [No Abstract]   [Full Text] [Related]  

  • 38. [Transamination of 2-aminoethylphosphonic acid by Pseudomonas aeruginosa].
    Lacoste AM; Neuzil E
    C R Acad Hebd Seances Acad Sci D; 1969 Jul; 269(2):254-7. PubMed ID: 4981846
    [No Abstract]   [Full Text] [Related]  

  • 39. The nucleotide sequences of tyrosine transfer RNAs of Escherichia coli.
    Goodman HM; Abelson JN; Landy A; Zadrazil S; Smith JD
    Eur J Biochem; 1970 Apr; 13(3):461-83. PubMed ID: 4315419
    [No Abstract]   [Full Text] [Related]  

  • 40. Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi.
    Metcalf WW; Wanner BL
    J Bacteriol; 1991 Jan; 173(2):587-600. PubMed ID: 1846145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.