These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 5922537)

  • 41. Occurrence of 2-aminoethylphosphonic acid in feeds, ruminal bacteria and duodenal digesta from defaunated sheep.
    Ankrah P; Loerch SC; Dehority BA
    J Anim Sci; 1989 Apr; 67(4):1061-9. PubMed ID: 2715111
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling.
    Quinn JP; Kulakova AN; Cooley NA; McGrath JW
    Environ Microbiol; 2007 Oct; 9(10):2392-400. PubMed ID: 17803765
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 31P NMR of phosphate and phosphonate complexes of metalloalkaline phosphatases.
    Chlebowski JF; Armitage IM; Tusa PP; Coleman JE
    J Biol Chem; 1976 Feb; 251(4):1207-16. PubMed ID: 2606
    [TBL] [Abstract][Full Text] [Related]  

  • 44. STUDIES ON THE MECHANISM OF BIOLOGICAL METHYLATION OF NUCLEIC ACIDS.
    TROPP BE; LAW JH; HAYES JM
    Biochemistry; 1964 Dec; 3():1837-40. PubMed ID: 14269296
    [No Abstract]   [Full Text] [Related]  

  • 45. Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation.
    Wanner BL; Metcalf WW
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):133-9. PubMed ID: 1335942
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alterations of alkaline phosphatase activity during adaptation of Escherichia coli to phosphite and hypophosphite.
    Lauwers AM; Heinen W
    Arch Microbiol; 1977 Feb; 112(1):103-7. PubMed ID: 320953
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Benzene from bacterial cleavage of the carbon-phosphorus bond of phenylphosphonates.
    Cook AM; Daughton CG; Alexander M
    Biochem J; 1979 Nov; 184(2):453-5. PubMed ID: 393257
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biosynthesis of 2-aminoethylphosphonic acid in cell-free preparations from Tetrahymena.
    Horiguchi M
    Biochim Biophys Acta; 1972 Jan; 261(1):102-13. PubMed ID: 4622267
    [No Abstract]   [Full Text] [Related]  

  • 49. DEGRADATION OF INORGANIC POLYPHOSPHATE IN MUTANTS OF AEROBACTER AEROGENES.
    HAROLD FM; HAROLD RL
    J Bacteriol; 1965 May; 89(5):1262-70. PubMed ID: 14292996
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Substrate selectivity in the action of alkaline and acid phosphatases.
    Neumann H
    J Biol Chem; 1968 Sep; 243(18):4671-6. PubMed ID: 4879088
    [No Abstract]   [Full Text] [Related]  

  • 51. Detection of 2-aminoethylphosphonic acid in suspended particles in an ultraoligotrophic lake: a two-dimensional nuclear magnetic resonance (2D-NMR) study.
    Shinohara R; Iwata T; Ikarashi Y; Sano T
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30739-30743. PubMed ID: 29569193
    [TBL] [Abstract][Full Text] [Related]  

  • 52. STUDIES ON THE BACTERIOSTATIC ACTION OF HYDROXYLAMINE.
    ROSENKRANZ HS; BENDICH AJ
    Biochim Biophys Acta; 1964 May; 87():40-53. PubMed ID: 14167432
    [No Abstract]   [Full Text] [Related]  

  • 53. The biosynthesis of the carbon-phosphorus bond in Tetrahymena.
    Liang CR; Rosenberg H
    Biochim Biophys Acta; 1968 Mar; 156(2):437-9. PubMed ID: 5641926
    [No Abstract]   [Full Text] [Related]  

  • 54. PROTEIN AND NUCLEIC ACID SYNTHESIS IN TWO MUTANTS OF ESCHERICHIA COLI WITH TEMPERATURE-SENSITIVE AMINOACYL RIBONUCLEIC ACID SYNTHETASES.
    EIDLIC L; NEIDHARDT FC
    J Bacteriol; 1965 Mar; 89(3):706-11. PubMed ID: 14273649
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rhizobium (Sinorhizobium) meliloti phn genes: characterization and identification of their protein products.
    Parker GF; Higgins TP; Hawkes T; Robson RL
    J Bacteriol; 1999 Jan; 181(2):389-95. PubMed ID: 9882650
    [TBL] [Abstract][Full Text] [Related]  

  • 56. INFLUENCE OF DEOXYRIBONUCLEIC ACID DEGRADATION PRODUCTS AND ORTHOPHOSPHATE ON UPTAKE OF DEOXYNUCLEOSIDES IN PNEUMOCOCCUS TYPE 3.
    FIRSHEIN W; GARGAN BA
    J Bacteriol; 1965 Aug; 90(2):337-42. PubMed ID: 14329444
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PATTERNS OF OXIDATIVE ASSIMILATION IN STRAINS OF PSEUDOMONAS AND ACHROMOBACTER.
    TOMLINSON GA; CAMPBELL JJ
    J Bacteriol; 1963 Sep; 86(3):434-44. PubMed ID: 14066419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biochemistry of shellfish lipids. XI. Incorporation of [32P]orthophosphate into ceramide ciliatine (2-aminoethylphosphonic acid) of the fresh-water mussel, Hyriopsis schlegelii.
    Itasaka O; Hori T; Sugita M
    Biochim Biophys Acta; 1969 Jun; 176(4):783-8. PubMed ID: 5797091
    [No Abstract]   [Full Text] [Related]  

  • 59. Phosphate starvation-independent 2-aminoethylphosphonic acid biodegradation in a newly isolated strain of Pseudomonas putida, NG2.
    Ternan NG; Quinn JP
    Syst Appl Microbiol; 1998 Aug; 21(3):346-52. PubMed ID: 9841125
    [TBL] [Abstract][Full Text] [Related]  

  • 60. SYNTHETIC DEOXYRIBO-OLIGONUCLEOTIDES AS TEMPLATES FOR THE DNA POLYMERASE OF ESCHERICHIA COLI: NEW DNA-LIKE L-POLYMERS CONTAINING REPEATING NUCLEOTIDE SEQUENCES.
    BYRD C; OHTSUKA E; MOON MW; KHORANA HG
    Proc Natl Acad Sci U S A; 1965 Jan; 53(1):79-86. PubMed ID: 14288800
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.