These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 592423)

  • 1. Molecular evolution of snake venom toxins.
    Hseu TH; Jou ED; Wang C; Yang CC
    J Mol Evol; 1977 Nov; 10(2):167-82. PubMed ID: 592423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Venom down under: dynamic evolution of Australian elapid snake toxins.
    Jackson TN; Sunagar K; Undheim EA; Koludarov I; Chan AH; Sanders K; Ali SA; Hendrikx I; Dunstan N; Fry BG
    Toxins (Basel); 2013 Dec; 5(12):2621-55. PubMed ID: 24351719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Putting the brakes on snake venom evolution: the unique molecular evolutionary patterns of Aipysurus eydouxii (Marbled sea snake) phospholipase A2 toxins.
    Li M; Fry BG; Kini RM
    Mol Biol Evol; 2005 Apr; 22(4):934-41. PubMed ID: 15635056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Evolvable: Investigating Interspecific and Intraspecific Venom Variation in Taipans (
    van Thiel J; Alonso LL; Slagboom J; Dunstan N; Wouters RM; Modahl CM; Vonk FJ; Jackson TNW; Kool J
    Toxins (Basel); 2023 Jan; 15(1):. PubMed ID: 36668892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ancient Diversification of Three-Finger Toxins in Micrurus Coral Snakes.
    Dashevsky D; Fry BG
    J Mol Evol; 2018 Jan; 86(1):58-67. PubMed ID: 29379986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel transcripts in the maxillary venom glands of advanced snakes.
    Fry BG; Scheib H; de L M Junqueira de Azevedo I; Silva DA; Casewell NR
    Toxicon; 2012 Jun; 59(7-8):696-708. PubMed ID: 22465490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and analysis of venom gland-specific genes from the coastal taipan (Oxyuranus scutellatus) and related species.
    St Pierre L; Woods R; Earl S; Masci PP; Lavin MF
    Cell Mol Life Sci; 2005 Nov; 62(22):2679-93. PubMed ID: 16261251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic relationships of snake venom toxic proteins.
    Ventura MM
    An Acad Bras Cienc; 1988; 60(2):239-44. PubMed ID: 3074674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences.
    Fry BG; Wüster W
    Mol Biol Evol; 2004 May; 21(5):870-83. PubMed ID: 15014162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.
    Modahl CM; Mackessy SP
    PLoS Negl Trop Dis; 2016 Jun; 10(6):e0004587. PubMed ID: 27280639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From genome to "venome": molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins.
    Fry BG
    Genome Res; 2005 Mar; 15(3):403-20. PubMed ID: 15741511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution and phylogeny of elapid snake venom three-finger toxins.
    Fry BG; Wüster W; Kini RM; Brusic V; Khan A; Venkataraman D; Rooney AP
    J Mol Evol; 2003 Jul; 57(1):110-29. PubMed ID: 12962311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restriction and recruitment-gene duplication and the origin and evolution of snake venom toxins.
    Hargreaves AD; Swain MT; Hegarty MJ; Logan DW; Mulley JF
    Genome Biol Evol; 2014 Aug; 6(8):2088-95. PubMed ID: 25079342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of three classes of snake neurotoxins by homology modeling and computer simulation graphics.
    Juan HF; Hung CC; Wang KT; Chiou SH
    Biochem Biophys Res Commun; 1999 Apr; 257(2):500-10. PubMed ID: 10198241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colubrid Venom Composition: An -Omics Perspective.
    Junqueira-de-Azevedo IL; Campos PF; Ching AT; Mackessy SP
    Toxins (Basel); 2016 Jul; 8(8):. PubMed ID: 27455326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom.
    Reyes-Velasco J; Card DC; Andrew AL; Shaney KJ; Adams RH; Schield DR; Casewell NR; Mackessy SP; Castoe TA
    Mol Biol Evol; 2015 Jan; 32(1):173-83. PubMed ID: 25338510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of accelerated segment switch in exons to alter targeting (ASSET) in the molecular evolution of snake venom proteins.
    Doley R; Mackessy SP; Kini RM
    BMC Evol Biol; 2009 Jun; 9():146. PubMed ID: 19563684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid Phalotris mertensi.
    Campos PF; Andrade-Silva D; Zelanis A; Paes Leme AF; Rocha MM; Menezes MC; Serrano SM; Junqueira-de-Azevedo Ide L
    Genome Biol Evol; 2016 Aug; 8(8):2266-87. PubMed ID: 27412610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of snake venom disintegrins by positive Darwinian selection.
    Juárez P; Comas I; González-Candelas F; Calvete JJ
    Mol Biol Evol; 2008 Nov; 25(11):2391-407. PubMed ID: 18701431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eggs-only diet: its implications for the toxin profile changes and ecology of the marbled sea snake (Aipysurus eydouxii).
    Li M; Fry BG; Kini RM
    J Mol Evol; 2005 Jan; 60(1):81-9. PubMed ID: 15696370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.