These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 592423)

  • 41. The rise of genomics in snake venom research: recent advances and future perspectives.
    Rao WQ; Kalogeropoulos K; Allentoft ME; Gopalakrishnan S; Zhao WN; Workman CT; Knudsen C; Jiménez-Mena B; Seneci L; Mousavi-Derazmahalleh M; Jenkins TP; Rivera-de-Torre E; Liu SQ; Laustsen AH
    Gigascience; 2022 Apr; 11():. PubMed ID: 35365832
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Purification and cloning of toxins from elapid venoms that target cyclic nucleotide-gated ion channels.
    Yamazaki Y; Brown RL; Morita T
    Biochemistry; 2002 Sep; 41(38):11331-7. PubMed ID: 12234174
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Snake venom components affecting blood coagulation and the vascular system: structural similarities and marked diversity.
    Yamazaki Y; Morita T
    Curr Pharm Des; 2007; 13(28):2872-86. PubMed ID: 17979732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coevolution of Snake Venom Toxic Activities and Diet: Evidence that Ecological Generalism Favours Toxicological Diversity.
    Davies EL; Arbuckle K
    Toxins (Basel); 2019 Dec; 11(12):. PubMed ID: 31817769
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of alpha-neurotoxin and phospholipase A2 activities from Micrurus venoms. Determination of the amino acid sequence and receptor-binding ability of the major alpha-neurotoxin from Micrurus nigrocinctus nigrocinctus.
    Rosso JP; Vargas-Rosso O; Gutiérrez JM; Rochat H; Bougis PE
    Eur J Biochem; 1996 May; 238(1):231-9. PubMed ID: 8665942
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Snake venomics: from the inventory of toxins to biology.
    Calvete JJ
    Toxicon; 2013 Dec; 75():44-62. PubMed ID: 23578513
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Toxin expression in snake venom evolves rapidly with constant shifts in evolutionary rates.
    Barua A; Mikheyev AS
    Proc Biol Sci; 2020 May; 287(1926):20200613. PubMed ID: 32345154
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular cloning of serine proteases from elapid snake venoms.
    Jin Y; Lee WH; Zhang Y
    Toxicon; 2007 Jun; 49(8):1200-7. PubMed ID: 17408712
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins.
    Hill RE; Mackessy SP
    Toxicon; 2000 Dec; 38(12):1663-87. PubMed ID: 10858509
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RNA-seq and high-definition mass spectrometry reveal the complex and divergent venoms of two rear-fanged colubrid snakes.
    McGivern JJ; Wray KP; Margres MJ; Couch ME; Mackessy SP; Rokyta DR
    BMC Genomics; 2014 Dec; 15(1):1061. PubMed ID: 25476704
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proteomic and functional variation within black snake venoms (Elapidae: Pseudechis).
    Goldenberg J; Cipriani V; Jackson TNW; Arbuckle K; Debono J; Dashevsky D; Panagides N; Ikonomopoulou MP; Koludarov I; Li B; Santana RC; Nouwens A; Jones A; Hay C; Dunstan N; Allen L; Bush B; Miles JJ; Ge L; Kwok HF; Fry BG
    Comp Biochem Physiol C Toxicol Pharmacol; 2018 Feb; 205():53-61. PubMed ID: 29353015
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cloning and characterisation of novel cystatins from elapid snake venom glands.
    Richards R; St Pierre L; Trabi M; Johnson LA; de Jersey J; Masci PP; Lavin MF
    Biochimie; 2011 Apr; 93(4):659-68. PubMed ID: 21172403
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inferring species trees from gene trees: a phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of venom proteins.
    Slowinski JB; Knight A; Rooney AP
    Mol Phylogenet Evol; 1997 Dec; 8(3):349-62. PubMed ID: 9417893
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cloning and sequence analysis of an Ophiophagus hannah cDNA encoding a precursor of two natriuretic peptide domains.
    Lei W; Zhang Y; Yu G; Jiang P; He Y; Lee W; Zhang Y
    Toxicon; 2011 Apr; 57(5):811-6. PubMed ID: 21334357
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure and function of snake venom toxins interacting with human von Willebrand factor.
    Matsui T; Hamako J
    Toxicon; 2005 Jun; 45(8):1075-87. PubMed ID: 15922776
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conformational prediction for snake venom toxins and laser Raman scattering of a cardiotoxin from Taiwan cobra (Naja naja atra) venom.
    Hseu TH; Liu YC; Wang C; Chang H; Hwang DM; Yang CC
    Biochemistry; 1977 Jun; 16(13):2999-3006. PubMed ID: 560203
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondrial DNA sequences from dried snake venom: a DNA barcoding approach to the identification of venom samples.
    Pook CE; McEwing R
    Toxicon; 2005 Dec; 46(7):711-5. PubMed ID: 16157361
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Receptor variability-driven evolution of snake toxins.
    Ji XH; Zhang SF; Gao B; Zhu SY
    Zool Res; 2018 Nov; 39(6):431-436. PubMed ID: 30084433
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Why the honey badger don't care: Convergent evolution of venom-targeted nicotinic acetylcholine receptors in mammals that survive venomous snake bites.
    Drabeck DH; Dean AM; Jansa SA
    Toxicon; 2015 Jun; 99():68-72. PubMed ID: 25796346
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Snake venom toxins. Structure-function relationships and phylogenetics.
    Strydom DJ
    Comp Biochem Physiol B; 1973 Jan; 44(1):269-81. PubMed ID: 4684005
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.