BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 5924642)

  • 1. The conversion of carbon dioxide to acetate. I. The use of cobalt-methylcobalamin as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum.
    Poston JM; Kuratomi K; Stadtman ER
    J Biol Chem; 1966 Sep; 241(18):4209-16. PubMed ID: 5924642
    [No Abstract]   [Full Text] [Related]  

  • 2. Total synthesis of acetate from CO2. I. Co-methylcobyric acid and CO-(methyl)-5-methoxybenzimidazolylcobamide as intermediates with Clostridium thermoaceticum.
    Ljungdahl L; Irion E; Wood HG
    Biochemistry; 1965 Dec; 4(12):2771-80. PubMed ID: 5880685
    [No Abstract]   [Full Text] [Related]  

  • 3. Total synthesis of acetate from CO2. VII. Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2.
    Schulman M; Ghambeer RK; Ljungdahl LG; Wood HG
    J Biol Chem; 1973 Sep; 248(18):6255-61. PubMed ID: 4730320
    [No Abstract]   [Full Text] [Related]  

  • 4. The conversion of carbon dioxide to acetate. II. The role of alpha-ketoisovalerate in the synthesis of acetate by Clostridium thermoaceticum.
    Kuratomi K; Stadtman ER
    J Biol Chem; 1966 Sep; 241(18):4217-23. PubMed ID: 5924643
    [No Abstract]   [Full Text] [Related]  

  • 5. Total synthesis of acetate from CO2. 3. Inhibition by alkylhalides of the synthesis from CO2, methyltetrahydrofolate, and methyl-B12 by Clostridium thermoaceticum.
    Ghambeer RK; Wood HG; Schulman M; Ljungdahl L
    Arch Biochem Biophys; 1971 Apr; 143(2):471-84. PubMed ID: 5145645
    [No Abstract]   [Full Text] [Related]  

  • 6. The conversion of carbon dioxide to acetate. 3. Demonstration of ferredoxin in the system converting Co-14Ch3-cobalamin to acetate.
    Poston JM; Stadtman ER
    Biochem Biophys Res Commun; 1967 Mar; 26(5):550-5. PubMed ID: 6049351
    [No Abstract]   [Full Text] [Related]  

  • 7. [Carbonic acid in the metabolism of bacteria of the genus Clostridium].
    Khor'kova GA; Azova LG
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1975; (12):87-92. PubMed ID: 237586
    [No Abstract]   [Full Text] [Related]  

  • 8. Ferredoxin-dependent synthesis of labelled pyruvate from labelled acetyl coenzyme A and carbon dioxide.
    Buchanan BB; Arnon DI
    Biochem Biophys Res Commun; 1965 Jul; 20(2):163-8. PubMed ID: 5850680
    [No Abstract]   [Full Text] [Related]  

  • 9. Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum.
    O'Brien WE; Ljungdahl LG
    J Bacteriol; 1972 Feb; 109(2):626-32. PubMed ID: 5058446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of corrinoids in the total synthesis of acetate from CO-2 by Clostridium thermoaceticum.
    Ljungdahl L; Irion E; Wood HG
    Fed Proc; 1966; 25(6):1642-8. PubMed ID: 5333065
    [No Abstract]   [Full Text] [Related]  

  • 11. Synthesis of Co-methyl cobalamin by cell-free extracts of Clostridium thermoaceticum.
    Kuratomi K; Poston JM; Stadtman ER
    Biochem Biophys Res Commun; 1966 Jun; 23(5):691-5. PubMed ID: 5963893
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanism of acetate synthesis from CO2 by Clostridium acidiurici.
    Waber LJ; Wood HG
    J Bacteriol; 1979 Nov; 140(2):468-78. PubMed ID: 500560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. METHYL-VITAMIN B12 AS A SOURCE OF METHYL GROUPS FOR THE SYNTHESIS OF ACETATE BY CELL-FREE EXTRACTS OF CLOSTRIDIUM THERMOACETICUM.
    POSTON JM; KURATOMI K; STADTMAN ER
    Ann N Y Acad Sci; 1964 Apr; 112():804-6. PubMed ID: 14167313
    [No Abstract]   [Full Text] [Related]  

  • 14. Total synthesis of acetate from CO2 by heterotrophic bacteria.
    Ljungdahl LG
    Annu Rev Microbiol; 1969; 23():515-38. PubMed ID: 4899080
    [No Abstract]   [Full Text] [Related]  

  • 15. Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO 2 .
    Andreesen JR; Schaupp A; Neurauter C; Brown A; Ljungdahl LG
    J Bacteriol; 1973 May; 114(2):743-51. PubMed ID: 4706193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of carbon dioxide on the growth of Clostridium butyricum and the biosynthesis of acetate].
    Azova LG; Khor'kova GA; Oleĭnik EK
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1975; (7):90-4. PubMed ID: 1174593
    [No Abstract]   [Full Text] [Related]  

  • 17. PHOSPHOROCLASTIC REACTIONS OF CLOSTRIDIUM NIGRIFICANS.
    AKAGI JM
    J Bacteriol; 1964 Sep; 88(3):813-4. PubMed ID: 14208530
    [No Abstract]   [Full Text] [Related]  

  • 18. Coenzyme specificity of dehydrogenases and fermentation of pyruvate by clostridia.
    von Hugo H; Schoberth S; Madan VK; Gottschalk G
    Arch Mikrobiol; 1972; 87(3):189-202. PubMed ID: 4404815
    [No Abstract]   [Full Text] [Related]  

  • 19. The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate.
    Pezacka E; Wood HG
    Arch Microbiol; 1984 Jan; 137(1):63-9. PubMed ID: 6424623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THE BIOSYNTHESIS OF ALANINE BY CLOSTRIDIUM KLUYVERI.
    ANDREW IG; MORRIS JG
    Biochim Biophys Acta; 1965 Jan; 97():176-9. PubMed ID: 14284314
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.