These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 592866)

  • 21. Retinal fibers alter tectal positional markers during the expansion of the retinal projection in goldfish.
    Schmidt JT
    J Comp Neurol; 1978 Jan; 177(2):279-95. PubMed ID: 621292
    [No Abstract]   [Full Text] [Related]  

  • 22. Specification of positional information in retinal ganglion cells of Xenopus: stability of the specified state.
    Hunt RK; Jacobson M
    Proc Natl Acad Sci U S A; 1972 Oct; 69(10):2860-4. PubMed ID: 4507610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and stability of postional information in Xenopus retinal ganglion cells.
    Hunt RK; Jacobson M
    Proc Natl Acad Sci U S A; 1972 Apr; 69(4):780-3. PubMed ID: 4502930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of pattern duplication in the retinotectal system of Xenopus. Suppression of duplication by eye-fragment interactions.
    Ide CF; Kosofsky BE; Hunt RK
    Dev Biol; 1979 Apr; 69(2):337-60. PubMed ID: 437346
    [No Abstract]   [Full Text] [Related]  

  • 25. The role of cell cycle in retinal development: cyclin-dependent kinase inhibitors co-ordinate cell-cycle inhibition, cell-fate determination and differentiation in the developing retina.
    Bilitou A; Ohnuma S
    Dev Dyn; 2010 Mar; 239(3):727-36. PubMed ID: 20108332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of pattern duplication in the retinotectal system of Xenopus. Induction of duplication in eye fragments by secondary cuts.
    Ling RT; Ide CF; Hunt RK
    Dev Biol; 1979 Apr; 69(2):361-74. PubMed ID: 437347
    [No Abstract]   [Full Text] [Related]  

  • 27. Genesis of positional information in the nervous system [proceedings].
    Jacobson M
    Med J Osaka Univ; 1976 Mar; 26(3-4):161-2. PubMed ID: 979861
    [No Abstract]   [Full Text] [Related]  

  • 28. Retina and lens regeneration in anuran amphibians.
    Filoni S
    Semin Cell Dev Biol; 2009 Jul; 20(5):528-34. PubMed ID: 19095070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The positional coding system in the early eye rudiment of Xenopus laevis, and its modification after grafting operations.
    Cooke J; Gaze RM
    J Embryol Exp Morphol; 1983 Oct; 77():53-71. PubMed ID: 6655437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The polar co-ordinate model for pattern regulation in epimorphic fields: a critical appraisal.
    Sibatani A
    J Theor Biol; 1981 Nov; 93(2):433-89. PubMed ID: 7334827
    [No Abstract]   [Full Text] [Related]  

  • 31. Morphogenetic forces in the development of the avian retina of possible significance for the polarity of central visual projections [proceedings].
    Horder TJ; Mashkas A; Webb JN
    J Physiol; 1979 Jun; 291():12P-13P. PubMed ID: 480199
    [No Abstract]   [Full Text] [Related]  

  • 32. The role of nAChR-mediated spontaneous retinal activity in visual system development.
    Feller MB
    J Neurobiol; 2002 Dec; 53(4):556-67. PubMed ID: 12436420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Retinal stem cells and regeneration.
    Moshiri A; Close J; Reh TA
    Int J Dev Biol; 2004; 48(8-9):1003-14. PubMed ID: 15558491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Retinal stem/progenitor cells in the ciliary marginal zone complete retinal regeneration: a study of retinal regeneration in a novel animal model.
    Miyake A; Araki M
    Dev Neurobiol; 2014 Jul; 74(7):739-56. PubMed ID: 24488715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The eye in the brain: retinoic acid effects morphogenesis of the eye and pathway selection of axons but not the differentiation of the retina in Xenopus laevis.
    Manns M; Fritzsch B
    Neurosci Lett; 1991 Jun; 127(2):150-4. PubMed ID: 1881624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphogenesis and physiogenesis of the retino-tectal connection in the chicken. I. The retinal ganglion cells and their axons.
    Rager G
    Proc R Soc Lond B Biol Sci; 1976 Feb; 192(1108):331-52. PubMed ID: 3794
    [No Abstract]   [Full Text] [Related]  

  • 37. Visual deprivation and the maturation of the retinotectal projection in Xenopus laevis.
    Keating MJ; Grant S; Dawes EA; Nanchahal K
    J Embryol Exp Morphol; 1986 Feb; 91():101-15. PubMed ID: 3711779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two healing patterns correlate with different adult neural connectivity patterns in regenerating embryonic Xenopus retina.
    Ide CF; Reynolds P; Tompkins R
    J Exp Zool; 1984 Apr; 230(1):71-80. PubMed ID: 6726148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polarization of the avian retina. Ocular transplantation studies.
    Goldberg S
    J Comp Neurol; 1976 Aug; 168(3):379-91. PubMed ID: 950386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Position, guidance, and mapping in the developing visual system.
    Holt CE; Harris WA
    J Neurobiol; 1993 Oct; 24(10):1400-22. PubMed ID: 8228964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.