These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 592873)
1. Analysis of bend initiation in cilia according to a sliding filament model. Lubliner J; Blum JJ J Theor Biol; 1977 Nov; 69(1):87-99. PubMed ID: 592873 [No Abstract] [Full Text] [Related]
2. Flagellar movement: a sliding filament model. Brokaw CJ Science; 1972 Nov; 178(4060):455-62. PubMed ID: 4673044 [TBL] [Abstract][Full Text] [Related]
3. Properties of an excitable dynein model for bend propagation in cilia and flagella. Murase M; Hines M; Blum JJ J Theor Biol; 1989 Aug; 139(3):413-30. PubMed ID: 2533309 [TBL] [Abstract][Full Text] [Related]
4. Bend propagation by a sliding filament model for flagella. Brokaw CJ J Exp Biol; 1971 Oct; 55(2):289-304. PubMed ID: 5114025 [No Abstract] [Full Text] [Related]
5. Displacement and sliding of twisted filaments in cilia and flagella. Schreiner KE J Biomech; 1977; 10(1):1-4. PubMed ID: 845173 [No Abstract] [Full Text] [Related]
7. Curvature regulation of the ciliary beat through axonemal twist. Sartori P; Geyer VF; Howard J; Jülicher F Phys Rev E; 2016 Oct; 94(4-1):042426. PubMed ID: 27841522 [TBL] [Abstract][Full Text] [Related]
8. Hydrodynamic calculations on the movements of cilia and flagella. I. Paramecium. Blake J J Theor Biol; 1974 May; 45(1):183-203. PubMed ID: 4836886 [No Abstract] [Full Text] [Related]
9. Cross-bridge behavior in a sliding filament model for flagella. Brokaw CJ Soc Gen Physiol Ser; 1975; 30():165-79. PubMed ID: 127383 [No Abstract] [Full Text] [Related]
10. Model for bend propagation in flagella. Lubliner J; Blum JJ J Theor Biol; 1971 Apr; 31(1):1-24. PubMed ID: 5576774 [No Abstract] [Full Text] [Related]
11. Excitable dynein model with multiple active sites for large-amplitude oscillations and bend propagation in flagella. Murase M J Theor Biol; 1991 Mar; 149(2):181-202. PubMed ID: 1829494 [TBL] [Abstract][Full Text] [Related]
12. Modelling the fluid mechanics of cilia and flagella in reproduction and development. Montenegro-Johnson TD; Smith AA; Smith DJ; Loghin D; Blake JR Eur Phys J E Soft Matter; 2012 Oct; 35(10):111. PubMed ID: 23099533 [TBL] [Abstract][Full Text] [Related]
13. Computer simulation of flagellar movement IX. Oscillation and symmetry breaking in a model for short flagella and nodal cilia. Brokaw CJ Cell Motil Cytoskeleton; 2005 Jan; 60(1):35-47. PubMed ID: 15573415 [TBL] [Abstract][Full Text] [Related]
14. A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation. Lindemann CB Cell Motil Cytoskeleton; 1994; 29(2):141-54. PubMed ID: 7820864 [TBL] [Abstract][Full Text] [Related]
15. A physical explanation of the temperature dependence of physiological processes mediated by cilia and flagella. Humphries S Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14693-8. PubMed ID: 23959901 [TBL] [Abstract][Full Text] [Related]
16. The contractile mechanism in cilia. Rikmenspoel R; Rudd WG Biophys J; 1973 Sep; 13(9):955-93. PubMed ID: 4733702 [TBL] [Abstract][Full Text] [Related]
18. Models for oscillation and bend propagation by flagella. Brokaw CJ Symp Soc Exp Biol; 1982; 35():313-38. PubMed ID: 6223398 [TBL] [Abstract][Full Text] [Related]
19. On the contribution of dynein-like activity to twisting in a three-dimensional sliding filament model. Hines M; Blum JJ Biophys J; 1985 May; 47(5):705-8. PubMed ID: 3160392 [TBL] [Abstract][Full Text] [Related]
20. Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Brokaw CJ Biophys J; 1972 May; 12(5):564-86. PubMed ID: 5030565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]