BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 5929749)

  • 41. Aromatic acids are chemoattractants for Pseudomonas putida.
    Harwood CS; Rivelli M; Ornston LN
    J Bacteriol; 1984 Nov; 160(2):622-8. PubMed ID: 6501217
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of benzyl alcohol dehydrogenases and benzaldehyde dehydrogenases from the benzyl alcohol and mandelate pathways in Acinetobacter calcoaceticus and from the TOL-plasmid-encoded toluene pathway in Pseudomonas putida. N-terminal amino acid sequences, amino acid compositions and immunological cross-reactions.
    Chalmers RM; Keen JN; Fewson CA
    Biochem J; 1991 Jan; 273(Pt 1)(Pt 1):99-107. PubMed ID: 1989592
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mandelate racemase from Pseudomonas putida. Absence of detectable intermolecular proton transfer accompanying racemization.
    Sharp TR; Hegeman GD; Kenyon GL
    Biochemistry; 1977 Mar; 16(6):1123-8. PubMed ID: 849410
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism of the reaction catalyzed by mandelate racemase: importance of electrophilic catalysis by glutamic acid 317.
    Mitra B; Kallarakal AT; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1995 Mar; 34(9):2777-87. PubMed ID: 7893689
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Perturbing the hydrophobic pocket of mandelate racemase to probe phenyl motion during catalysis.
    Siddiqi F; Bourque JR; Jiang H; Gardner M; St Maurice M; Blouin C; Bearne SL
    Biochemistry; 2005 Jun; 44(25):9013-21. PubMed ID: 15966725
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Restructuring catalysis in the mandelate pathway.
    Neidhart DC; Howell PL; Petsko GA; Gerlt JA; Kozarich JW; Powers VM; Kenyon GL
    Biochem Soc Symp; 1990; 57():135-41. PubMed ID: 2099737
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Esters of mandelic acid as substrates for (S)-mandelate dehydrogenase from Pseudomonas putida: implications for the reaction mechanism.
    Dewanti AR; Xu Y; Mitra B
    Biochemistry; 2004 Feb; 43(7):1883-90. PubMed ID: 14967029
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation and characterization of a benzoylformate decarboxylase and a NAD+/NADP+-dependent benzaldehyde dehydrogenase involved in D-phenylglycine metabolism in Pseudomonas stutzeri ST-201.
    Saehuan C; Rojanarata T; Wiyakrutta S; McLeish MJ; Meevootisom V
    Biochim Biophys Acta; 2007 Nov; 1770(11):1585-92. PubMed ID: 17916405
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of arginine and pyrimidine biosynthesis in Pseudomonas putida.
    Condon S; Collins JK; O'donovan GA
    J Gen Microbiol; 1976 Feb; 92(2):375-83. PubMed ID: 176312
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutational analysis of the active site flap (20s loop) of mandelate racemase.
    Bourque JR; Bearne SL
    Biochemistry; 2008 Jan; 47(2):566-78. PubMed ID: 18092808
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of novel benzoylformate decarboxylases by growth selection.
    Henning H; Leggewie C; Pohl M; Müller M; Eggert T; Jaeger KE
    Appl Environ Microbiol; 2006 Dec; 72(12):7510-7. PubMed ID: 17012586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. (S)-Mandelate dehydrogenase from Pseudomonas putida: mechanistic studies with alternate substrates and pH and kinetic isotope effects.
    Lehoux IE; Mitra B
    Biochemistry; 1999 May; 38(18):5836-48. PubMed ID: 10231535
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of synthesis of benzyl alcohol dehydrogenase in Acinetobacter calcoaceticus NCIB8250.
    Beggs JD; Fewson CA
    J Gen Microbiol; 1977 Nov; 103(1):127-40. PubMed ID: 201725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inducible degradation of hydroxyproline in Pseudomonas putida: pathway regulation and hydroxyproline uptake.
    Gryder RM; Adams E
    J Bacteriol; 1969 Jan; 97(1):292-306. PubMed ID: 5764334
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Constitutivity of the mandelate enzymes in Acinetobacter calcoaceticus, N.C.I.B. 8250, and its effect on the synthesis of benzyl alcohol dehydrogenase.
    Moyes HM; Fewson CA
    Biochem Soc Trans; 1976; 4(6):1105-6. PubMed ID: 1022571
    [No Abstract]   [Full Text] [Related]  

  • 56. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella calcoacetica. 3. Effects of 3-hydroxy-4-methylbenzoate on the synthesis of enzymes of the protocatechuate branch.
    Cánovas JL; Johnson BF; Wheelis ML
    Eur J Biochem; 1968 Jan; 3(3):305-11. PubMed ID: 5650850
    [No Abstract]   [Full Text] [Related]  

  • 57. Arginine 165/arginine 277 pair in (S)-mandelate dehydrogenase from Pseudomonas putida: role in catalysis and substrate binding.
    Xu Y; Dewanti AR; Mitra B
    Biochemistry; 2002 Oct; 41(41):12313-9. PubMed ID: 12369819
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mandelate racemase from Pseudomonas putida. Affinity labeling of the enzyme by D,L-alpha-phenylglycidate in the presence of magnesium ion.
    Fee JA; Hegeman GD; Kenyon GL
    Biochemistry; 1974 Jun; 13(12):2533-8. PubMed ID: 4831902
    [No Abstract]   [Full Text] [Related]  

  • 59. New regulatory mutation affecting some of the tryptophan genes in Pseudomonas putida.
    Maurer R; Crawford IP
    J Bacteriol; 1971 May; 106(2):331-8. PubMed ID: 5573729
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inducible uptake system for -carboxy-cis, cis-muconate in a permeability mutant of Pseudomonas putida.
    Meagher RB; McCorkle GM; Ornston MK; Ornston LN
    J Bacteriol; 1972 Aug; 111(2):465-73. PubMed ID: 5053469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.